Metamath Proof Explorer


Theorem exatleN

Description: A condition for an atom to be less than or equal to a lattice element. Part of proof of Lemma A in Crawley p. 112. (Contributed by NM, 28-Apr-2012) (New usage is discouraged.)

Ref Expression
Hypotheses atomle.b B=BaseK
atomle.l ˙=K
atomle.j ˙=joinK
atomle.a A=AtomsK
Assertion exatleN KHLXBPAQARAP˙X¬Q˙XR˙P˙QR˙XR=P

Proof

Step Hyp Ref Expression
1 atomle.b B=BaseK
2 atomle.l ˙=K
3 atomle.j ˙=joinK
4 atomle.a A=AtomsK
5 simpl32 KHLXBPAQARAP˙X¬Q˙XR˙P˙QRP¬Q˙X
6 simp11l KHLXBPAQARAP˙X¬Q˙XR˙P˙QRPR˙XKHL
7 6 hllatd KHLXBPAQARAP˙X¬Q˙XR˙P˙QRPR˙XKLat
8 simp122 KHLXBPAQARAP˙X¬Q˙XR˙P˙QRPR˙XQA
9 1 4 atbase QAQB
10 8 9 syl KHLXBPAQARAP˙X¬Q˙XR˙P˙QRPR˙XQB
11 simp121 KHLXBPAQARAP˙X¬Q˙XR˙P˙QRPR˙XPA
12 1 4 atbase PAPB
13 11 12 syl KHLXBPAQARAP˙X¬Q˙XR˙P˙QRPR˙XPB
14 simp123 KHLXBPAQARAP˙X¬Q˙XR˙P˙QRPR˙XRA
15 1 4 atbase RARB
16 14 15 syl KHLXBPAQARAP˙X¬Q˙XR˙P˙QRPR˙XRB
17 1 3 latjcl KLatPBRBP˙RB
18 7 13 16 17 syl3anc KHLXBPAQARAP˙X¬Q˙XR˙P˙QRPR˙XP˙RB
19 simp11r KHLXBPAQARAP˙X¬Q˙XR˙P˙QRPR˙XXB
20 14 8 11 3jca KHLXBPAQARAP˙X¬Q˙XR˙P˙QRPR˙XRAQAPA
21 simp2 KHLXBPAQARAP˙X¬Q˙XR˙P˙QRPR˙XRP
22 6 20 21 3jca KHLXBPAQARAP˙X¬Q˙XR˙P˙QRPR˙XKHLRAQAPARP
23 simp133 KHLXBPAQARAP˙X¬Q˙XR˙P˙QRPR˙XR˙P˙Q
24 2 3 4 hlatexch1 KHLRAQAPARPR˙P˙QQ˙P˙R
25 22 23 24 sylc KHLXBPAQARAP˙X¬Q˙XR˙P˙QRPR˙XQ˙P˙R
26 simp131 KHLXBPAQARAP˙X¬Q˙XR˙P˙QRPR˙XP˙X
27 simp3 KHLXBPAQARAP˙X¬Q˙XR˙P˙QRPR˙XR˙X
28 1 2 3 latjle12 KLatPBRBXBP˙XR˙XP˙R˙X
29 7 13 16 19 28 syl13anc KHLXBPAQARAP˙X¬Q˙XR˙P˙QRPR˙XP˙XR˙XP˙R˙X
30 26 27 29 mpbi2and KHLXBPAQARAP˙X¬Q˙XR˙P˙QRPR˙XP˙R˙X
31 1 2 7 10 18 19 25 30 lattrd KHLXBPAQARAP˙X¬Q˙XR˙P˙QRPR˙XQ˙X
32 31 3expia KHLXBPAQARAP˙X¬Q˙XR˙P˙QRPR˙XQ˙X
33 5 32 mtod KHLXBPAQARAP˙X¬Q˙XR˙P˙QRP¬R˙X
34 33 ex KHLXBPAQARAP˙X¬Q˙XR˙P˙QRP¬R˙X
35 34 necon4ad KHLXBPAQARAP˙X¬Q˙XR˙P˙QR˙XR=P
36 simp31 KHLXBPAQARAP˙X¬Q˙XR˙P˙QP˙X
37 breq1 R=PR˙XP˙X
38 36 37 syl5ibrcom KHLXBPAQARAP˙X¬Q˙XR˙P˙QR=PR˙X
39 35 38 impbid KHLXBPAQARAP˙X¬Q˙XR˙P˙QR˙XR=P