| Step | Hyp | Ref | Expression | 
						
							| 1 |  | expcnOLD.j |  | 
						
							| 2 |  | oveq2 |  | 
						
							| 3 | 2 | mpteq2dv |  | 
						
							| 4 | 3 | eleq1d |  | 
						
							| 5 |  | oveq2 |  | 
						
							| 6 | 5 | mpteq2dv |  | 
						
							| 7 | 6 | eleq1d |  | 
						
							| 8 |  | oveq2 |  | 
						
							| 9 | 8 | mpteq2dv |  | 
						
							| 10 | 9 | eleq1d |  | 
						
							| 11 |  | oveq2 |  | 
						
							| 12 | 11 | mpteq2dv |  | 
						
							| 13 | 12 | eleq1d |  | 
						
							| 14 |  | exp0 |  | 
						
							| 15 | 14 | mpteq2ia |  | 
						
							| 16 | 1 | cnfldtopon |  | 
						
							| 17 | 16 | a1i |  | 
						
							| 18 |  | 1cnd |  | 
						
							| 19 | 17 17 18 | cnmptc |  | 
						
							| 20 | 19 | mptru |  | 
						
							| 21 | 15 20 | eqeltri |  | 
						
							| 22 |  | oveq1 |  | 
						
							| 23 | 22 | cbvmptv |  | 
						
							| 24 |  | id |  | 
						
							| 25 |  | simpl |  | 
						
							| 26 |  | expp1 |  | 
						
							| 27 | 24 25 26 | syl2anr |  | 
						
							| 28 | 27 | mpteq2dva |  | 
						
							| 29 | 23 28 | eqtrid |  | 
						
							| 30 | 16 | a1i |  | 
						
							| 31 |  | oveq1 |  | 
						
							| 32 | 31 | cbvmptv |  | 
						
							| 33 |  | simpr |  | 
						
							| 34 | 32 33 | eqeltrrid |  | 
						
							| 35 | 30 | cnmptid |  | 
						
							| 36 | 1 | mulcn |  | 
						
							| 37 | 36 | a1i |  | 
						
							| 38 | 30 34 35 37 | cnmpt12f |  | 
						
							| 39 | 29 38 | eqeltrd |  | 
						
							| 40 | 39 | ex |  | 
						
							| 41 | 4 7 10 13 21 40 | nn0ind |  |