Metamath Proof Explorer


Theorem exprmfct

Description: Every integer greater than or equal to 2 has a prime factor. (Contributed by Paul Chapman, 26-Oct-2012) (Proof shortened by Mario Carneiro, 20-Jun-2015)

Ref Expression
Assertion exprmfct N2ppN

Proof

Step Hyp Ref Expression
1 eluz2nn N2N
2 eleq1 x=1x212
3 2 imbi1d x=1x2ppx12ppx
4 eleq1 x=yx2y2
5 breq2 x=ypxpy
6 5 rexbidv x=yppxppy
7 4 6 imbi12d x=yx2ppxy2ppy
8 eleq1 x=zx2z2
9 breq2 x=zpxpz
10 9 rexbidv x=zppxppz
11 8 10 imbi12d x=zx2ppxz2ppz
12 eleq1 x=yzx2yz2
13 breq2 x=yzpxpyz
14 13 rexbidv x=yzppxppyz
15 12 14 imbi12d x=yzx2ppxyz2ppyz
16 eleq1 x=Nx2N2
17 breq2 x=NpxpN
18 17 rexbidv x=NppxppN
19 16 18 imbi12d x=Nx2ppxN2ppN
20 1m1e0 11=0
21 uz2m1nn 1211
22 20 21 eqeltrrid 120
23 0nnn ¬0
24 23 pm2.21i 0ppx
25 22 24 syl 12ppx
26 prmz xx
27 iddvds xxx
28 26 27 syl xxx
29 breq1 p=xpxxx
30 29 rspcev xxxppx
31 28 30 mpdan xppx
32 31 a1d xx2ppx
33 simpl y2z2y2
34 eluzelz y2y
35 34 ad2antrr y2z2py
36 eluzelz z2z
37 36 ad2antlr y2z2pz
38 dvdsmul1 yzyyz
39 35 37 38 syl2anc y2z2pyyz
40 prmz pp
41 40 adantl y2z2pp
42 35 37 zmulcld y2z2pyz
43 dvdstr pyyzpyyyzpyz
44 41 35 42 43 syl3anc y2z2ppyyyzpyz
45 39 44 mpan2d y2z2ppypyz
46 45 reximdva y2z2ppyppyz
47 33 46 embantd y2z2y2ppyppyz
48 47 a1dd y2z2y2ppyyz2ppyz
49 48 adantrd y2z2y2ppyz2ppzyz2ppyz
50 3 7 11 15 19 25 32 49 prmind NN2ppN
51 1 50 mpcom N2ppN