Description: Build a bijection between restricted abstract builders, given a bijection between the base classes, deduction version. (Contributed by Thierry Arnoux, 17-Aug-2018)
Ref | Expression | ||
---|---|---|---|
Hypotheses | f1oresrab.1 | |
|
f1oresrab.2 | |
||
f1oresrab.3 | |
||
Assertion | f1oresrab | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1oresrab.1 | |
|
2 | f1oresrab.2 | |
|
3 | f1oresrab.3 | |
|
4 | f1ofun | |
|
5 | funcnvcnv | |
|
6 | 2 4 5 | 3syl | |
7 | f1ocnv | |
|
8 | f1of1 | |
|
9 | 2 7 8 | 3syl | |
10 | ssrab2 | |
|
11 | f1ores | |
|
12 | 9 10 11 | sylancl | |
13 | 1 | mptpreima | |
14 | 3 | 3expia | |
15 | 14 | alrimiv | |
16 | f1of | |
|
17 | 2 16 | syl | |
18 | 1 | fmpt | |
19 | 17 18 | sylibr | |
20 | 19 | r19.21bi | |
21 | elrab3t | |
|
22 | 15 20 21 | syl2anc | |
23 | 22 | rabbidva | |
24 | 13 23 | eqtrid | |
25 | 24 | f1oeq3d | |
26 | 12 25 | mpbid | |
27 | f1orescnv | |
|
28 | 6 26 27 | syl2anc | |
29 | rescnvcnv | |
|
30 | f1oeq1 | |
|
31 | 29 30 | ax-mp | |
32 | 28 31 | sylib | |