Metamath Proof Explorer


Theorem f1oresrab

Description: Build a bijection between restricted abstract builders, given a bijection between the base classes, deduction version. (Contributed by Thierry Arnoux, 17-Aug-2018)

Ref Expression
Hypotheses f1oresrab.1 F=xAC
f1oresrab.2 φF:A1-1 ontoB
f1oresrab.3 φxAy=Cχψ
Assertion f1oresrab φFxA|ψ:xA|ψ1-1 ontoyB|χ

Proof

Step Hyp Ref Expression
1 f1oresrab.1 F=xAC
2 f1oresrab.2 φF:A1-1 ontoB
3 f1oresrab.3 φxAy=Cχψ
4 f1ofun F:A1-1 ontoBFunF
5 funcnvcnv FunFFunF-1-1
6 2 4 5 3syl φFunF-1-1
7 f1ocnv F:A1-1 ontoBF-1:B1-1 ontoA
8 f1of1 F-1:B1-1 ontoAF-1:B1-1A
9 2 7 8 3syl φF-1:B1-1A
10 ssrab2 yB|χB
11 f1ores F-1:B1-1AyB|χBF-1yB|χ:yB|χ1-1 ontoF-1yB|χ
12 9 10 11 sylancl φF-1yB|χ:yB|χ1-1 ontoF-1yB|χ
13 1 mptpreima F-1yB|χ=xA|CyB|χ
14 3 3expia φxAy=Cχψ
15 14 alrimiv φxAyy=Cχψ
16 f1of F:A1-1 ontoBF:AB
17 2 16 syl φF:AB
18 1 fmpt xACBF:AB
19 17 18 sylibr φxACB
20 19 r19.21bi φxACB
21 elrab3t yy=CχψCBCyB|χψ
22 15 20 21 syl2anc φxACyB|χψ
23 22 rabbidva φxA|CyB|χ=xA|ψ
24 13 23 eqtrid φF-1yB|χ=xA|ψ
25 24 f1oeq3d φF-1yB|χ:yB|χ1-1 ontoF-1yB|χF-1yB|χ:yB|χ1-1 ontoxA|ψ
26 12 25 mpbid φF-1yB|χ:yB|χ1-1 ontoxA|ψ
27 f1orescnv FunF-1-1F-1yB|χ:yB|χ1-1 ontoxA|ψF-1-1xA|ψ:xA|ψ1-1 ontoyB|χ
28 6 26 27 syl2anc φF-1-1xA|ψ:xA|ψ1-1 ontoyB|χ
29 rescnvcnv F-1-1xA|ψ=FxA|ψ
30 f1oeq1 F-1-1xA|ψ=FxA|ψF-1-1xA|ψ:xA|ψ1-1 ontoyB|χFxA|ψ:xA|ψ1-1 ontoyB|χ
31 29 30 ax-mp F-1-1xA|ψ:xA|ψ1-1 ontoyB|χFxA|ψ:xA|ψ1-1 ontoyB|χ
32 28 31 sylib φFxA|ψ:xA|ψ1-1 ontoyB|χ