Metamath Proof Explorer


Theorem fallfacval3

Description: A product representation of falling factorial when A is a nonnegative integer. (Contributed by Scott Fenton, 20-Mar-2018)

Ref Expression
Assertion fallfacval3 N0AAN_=k=AN1Ak

Proof

Step Hyp Ref Expression
1 elfz3nn0 N0AA0
2 1 nn0cnd N0AA
3 elfznn0 N0AN0
4 fallfacval AN0AN_=j=0N1Aj
5 2 3 4 syl2anc N0AAN_=j=0N1Aj
6 elfzel2 N0AA
7 elfzel1 N0A0
8 elfzelz N0AN
9 peano2zm NN1
10 8 9 syl N0AN1
11 elfzelz j0N1j
12 11 zcnd j0N1j
13 subcl AjAj
14 2 12 13 syl2an N0Aj0N1Aj
15 oveq2 j=AkAj=AAk
16 6 7 10 14 15 fprodrev N0Aj=0N1Aj=k=AN1A0AAk
17 2 subid1d N0AA0=A
18 17 oveq2d N0AAN1A0=AN1A
19 2 adantr N0AkAN1A0A
20 elfzelz kAN1A0k
21 20 zcnd kAN1A0k
22 21 adantl N0AkAN1A0k
23 19 22 nncand N0AkAN1A0AAk=k
24 18 23 prodeq12dv N0Ak=AN1A0AAk=k=AN1Ak
25 5 16 24 3eqtrd N0AAN_=k=AN1Ak