Metamath Proof Explorer


Theorem feqmptdf

Description: Deduction form of dffn5f . (Contributed by Mario Carneiro, 8-Jan-2015) (Revised by Thierry Arnoux, 10-May-2017)

Ref Expression
Hypotheses feqmptdf.1 _ x A
feqmptdf.2 _ x F
feqmptdf.3 φ F : A B
Assertion feqmptdf φ F = x A F x

Proof

Step Hyp Ref Expression
1 feqmptdf.1 _ x A
2 feqmptdf.2 _ x F
3 feqmptdf.3 φ F : A B
4 ffn F : A B F Fn A
5 fnrel F Fn A Rel F
6 nfcv _ y F
7 2 6 dfrel4 Rel F F = x y | x F y
8 5 7 sylib F Fn A F = x y | x F y
9 2 1 nffn x F Fn A
10 nfv y F Fn A
11 fnbr F Fn A x F y x A
12 11 ex F Fn A x F y x A
13 12 pm4.71rd F Fn A x F y x A x F y
14 eqcom y = F x F x = y
15 fnbrfvb F Fn A x A F x = y x F y
16 14 15 bitrid F Fn A x A y = F x x F y
17 16 pm5.32da F Fn A x A y = F x x A x F y
18 13 17 bitr4d F Fn A x F y x A y = F x
19 9 10 18 opabbid F Fn A x y | x F y = x y | x A y = F x
20 8 19 eqtrd F Fn A F = x y | x A y = F x
21 df-mpt x A F x = x y | x A y = F x
22 20 21 eqtr4di F Fn A F = x A F x
23 3 4 22 3syl φ F = x A F x