Metamath Proof Explorer


Theorem fib1

Description: Value of the Fibonacci sequence at index 1. (Contributed by Thierry Arnoux, 25-Apr-2019)

Ref Expression
Assertion fib1 Fibci1=1

Proof

Step Hyp Ref Expression
1 df-fib Fibci=⟨“01”⟩seqstrwWord0.-12ww2+ww1
2 1 fveq1i Fibci1=⟨“01”⟩seqstrwWord0.-12ww2+ww11
3 nn0ex 0V
4 3 a1i 0V
5 0nn0 00
6 5 a1i 00
7 1nn0 10
8 7 a1i 10
9 6 8 s2cld ⟨“01”⟩Word0
10 eqid Word0.-1⟨“01”⟩=Word0.-1⟨“01”⟩
11 fiblem wWord0.-12ww2+ww1:Word0.-1⟨“01”⟩0
12 11 a1i wWord0.-12ww2+ww1:Word0.-1⟨“01”⟩0
13 2nn 2
14 1lt2 1<2
15 elfzo0 10..^21021<2
16 7 13 14 15 mpbir3an 10..^2
17 s2len ⟨“01”⟩=2
18 17 oveq2i 0..^⟨“01”⟩=0..^2
19 16 18 eleqtrri 10..^⟨“01”⟩
20 19 a1i 10..^⟨“01”⟩
21 4 9 10 12 20 sseqfv1 ⟨“01”⟩seqstrwWord0.-12ww2+ww11=⟨“01”⟩1
22 21 mptru ⟨“01”⟩seqstrwWord0.-12ww2+ww11=⟨“01”⟩1
23 s2fv1 10⟨“01”⟩1=1
24 7 23 ax-mp ⟨“01”⟩1=1
25 2 22 24 3eqtri Fibci1=1