Metamath Proof Explorer


Theorem ficardunOLD

Description: Obsolete version of ficardun as of 3-Jul-2024. (Contributed by Paul Chapman, 5-Jun-2009) (Proof shortened by Mario Carneiro, 28-Apr-2015) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion ficardunOLD AFinBFinAB=cardAB=cardA+𝑜cardB

Proof

Step Hyp Ref Expression
1 finnum AFinAdomcard
2 finnum BFinBdomcard
3 cardadju AdomcardBdomcardA⊔︀BcardA+𝑜cardB
4 1 2 3 syl2an AFinBFinA⊔︀BcardA+𝑜cardB
5 4 3adant3 AFinBFinAB=A⊔︀BcardA+𝑜cardB
6 5 ensymd AFinBFinAB=cardA+𝑜cardBA⊔︀B
7 endjudisj AFinBFinAB=A⊔︀BAB
8 entr cardA+𝑜cardBA⊔︀BA⊔︀BABcardA+𝑜cardBAB
9 6 7 8 syl2anc AFinBFinAB=cardA+𝑜cardBAB
10 carden2b cardA+𝑜cardBABcardcardA+𝑜cardB=cardAB
11 9 10 syl AFinBFinAB=cardcardA+𝑜cardB=cardAB
12 ficardom AFincardAω
13 ficardom BFincardBω
14 nnacl cardAωcardBωcardA+𝑜cardBω
15 cardnn cardA+𝑜cardBωcardcardA+𝑜cardB=cardA+𝑜cardB
16 14 15 syl cardAωcardBωcardcardA+𝑜cardB=cardA+𝑜cardB
17 12 13 16 syl2an AFinBFincardcardA+𝑜cardB=cardA+𝑜cardB
18 17 3adant3 AFinBFinAB=cardcardA+𝑜cardB=cardA+𝑜cardB
19 11 18 eqtr3d AFinBFinAB=cardAB=cardA+𝑜cardB