Metamath Proof Explorer


Theorem fidmfisupp

Description: A function with a finite domain is finitely supported. (Contributed by Glauco Siliprandi, 24-Dec-2020)

Ref Expression
Hypotheses fidmfisupp.1 φF:DR
fidmfisupp.2 φDFin
fidmfisupp.3 φZV
Assertion fidmfisupp φfinSuppZF

Proof

Step Hyp Ref Expression
1 fidmfisupp.1 φF:DR
2 fidmfisupp.2 φDFin
3 fidmfisupp.3 φZV
4 1 2 fexd φFV
5 suppimacnv FVZVFsuppZ=F-1VZ
6 4 3 5 syl2anc φFsuppZ=F-1VZ
7 2 1 fisuppfi φF-1VZFin
8 6 7 eqeltrd φFsuppZFin
9 1 ffund φFunF
10 funisfsupp FunFFVZVfinSuppZFFsuppZFin
11 9 4 3 10 syl3anc φfinSuppZFFsuppZFin
12 8 11 mpbird φfinSuppZF