Metamath Proof Explorer


Theorem finlocfin

Description: A finite cover of a topological space is a locally finite cover. (Contributed by Jeff Hankins, 21-Jan-2010)

Ref Expression
Hypotheses finlocfin.1 X = J
finlocfin.2 Y = A
Assertion finlocfin J Top A Fin X = Y A LocFin J

Proof

Step Hyp Ref Expression
1 finlocfin.1 X = J
2 finlocfin.2 Y = A
3 simp1 J Top A Fin X = Y J Top
4 simp3 J Top A Fin X = Y X = Y
5 simpl1 J Top A Fin X = Y x X J Top
6 1 topopn J Top X J
7 5 6 syl J Top A Fin X = Y x X X J
8 simpr J Top A Fin X = Y x X x X
9 simpl2 J Top A Fin X = Y x X A Fin
10 ssrab2 s A | s X A
11 ssfi A Fin s A | s X A s A | s X Fin
12 9 10 11 sylancl J Top A Fin X = Y x X s A | s X Fin
13 eleq2 n = X x n x X
14 ineq2 n = X s n = s X
15 14 neeq1d n = X s n s X
16 15 rabbidv n = X s A | s n = s A | s X
17 16 eleq1d n = X s A | s n Fin s A | s X Fin
18 13 17 anbi12d n = X x n s A | s n Fin x X s A | s X Fin
19 18 rspcev X J x X s A | s X Fin n J x n s A | s n Fin
20 7 8 12 19 syl12anc J Top A Fin X = Y x X n J x n s A | s n Fin
21 20 ralrimiva J Top A Fin X = Y x X n J x n s A | s n Fin
22 1 2 islocfin A LocFin J J Top X = Y x X n J x n s A | s n Fin
23 3 4 21 22 syl3anbrc J Top A Fin X = Y A LocFin J