Description: Lemma for finsumvtxdg2sstep . (Contributed by AV, 19-Dec-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | finsumvtxdg2sstep.v | |
|
finsumvtxdg2sstep.e | |
||
finsumvtxdg2sstep.k | |
||
finsumvtxdg2sstep.i | |
||
finsumvtxdg2sstep.p | |
||
finsumvtxdg2sstep.s | |
||
finsumvtxdg2ssteplem.j | |
||
Assertion | finsumvtxdg2ssteplem3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | finsumvtxdg2sstep.v | |
|
2 | finsumvtxdg2sstep.e | |
|
3 | finsumvtxdg2sstep.k | |
|
4 | finsumvtxdg2sstep.i | |
|
5 | finsumvtxdg2sstep.p | |
|
6 | finsumvtxdg2sstep.s | |
|
7 | finsumvtxdg2ssteplem.j | |
|
8 | 7 | reqabi | |
9 | 8 | anbi1i | |
10 | anass | |
|
11 | 9 10 | bitri | |
12 | 11 | rabbia2 | |
13 | 12 | fveq2i | |
14 | 13 | a1i | |
15 | 14 | sumeq2dv | |
16 | 15 | oveq1d | |
17 | simpll | |
|
18 | simpr | |
|
19 | simplr | |
|
20 | 1 2 | numedglnl | |
21 | 17 18 19 20 | syl3anc | |
22 | 16 21 | eqtrd | |
23 | 7 | fveq2i | |
24 | 22 23 | eqtr4di | |