Metamath Proof Explorer


Theorem finsumvtxdg2ssteplem3

Description: Lemma for finsumvtxdg2sstep . (Contributed by AV, 19-Dec-2021)

Ref Expression
Hypotheses finsumvtxdg2sstep.v V=VtxG
finsumvtxdg2sstep.e E=iEdgG
finsumvtxdg2sstep.k K=VN
finsumvtxdg2sstep.i I=idomE|NEi
finsumvtxdg2sstep.p P=EI
finsumvtxdg2sstep.s S=KP
finsumvtxdg2ssteplem.j J=idomE|NEi
Assertion finsumvtxdg2ssteplem3 GUPGraphNVVFinEFinvVNiJ|vEi+idomE|Ei=N=J

Proof

Step Hyp Ref Expression
1 finsumvtxdg2sstep.v V=VtxG
2 finsumvtxdg2sstep.e E=iEdgG
3 finsumvtxdg2sstep.k K=VN
4 finsumvtxdg2sstep.i I=idomE|NEi
5 finsumvtxdg2sstep.p P=EI
6 finsumvtxdg2sstep.s S=KP
7 finsumvtxdg2ssteplem.j J=idomE|NEi
8 7 reqabi iJidomENEi
9 8 anbi1i iJvEiidomENEivEi
10 anass idomENEivEiidomENEivEi
11 9 10 bitri iJvEiidomENEivEi
12 11 rabbia2 iJ|vEi=idomE|NEivEi
13 12 fveq2i iJ|vEi=idomE|NEivEi
14 13 a1i GUPGraphNVVFinEFinvVNiJ|vEi=idomE|NEivEi
15 14 sumeq2dv GUPGraphNVVFinEFinvVNiJ|vEi=vVNidomE|NEivEi
16 15 oveq1d GUPGraphNVVFinEFinvVNiJ|vEi+idomE|Ei=N=vVNidomE|NEivEi+idomE|Ei=N
17 simpll GUPGraphNVVFinEFinGUPGraph
18 simpr GUPGraphNVVFinEFinVFinEFin
19 simplr GUPGraphNVVFinEFinNV
20 1 2 numedglnl GUPGraphVFinEFinNVvVNidomE|NEivEi+idomE|Ei=N=idomE|NEi
21 17 18 19 20 syl3anc GUPGraphNVVFinEFinvVNidomE|NEivEi+idomE|Ei=N=idomE|NEi
22 16 21 eqtrd GUPGraphNVVFinEFinvVNiJ|vEi+idomE|Ei=N=idomE|NEi
23 7 fveq2i J=idomE|NEi
24 22 23 eqtr4di GUPGraphNVVFinEFinvVNiJ|vEi+idomE|Ei=N=J