Metamath Proof Explorer


Theorem finxp00

Description: Cartesian exponentiation of the empty set to any power is the empty set. (Contributed by ML, 24-Oct-2020)

Ref Expression
Assertion finxp00 ↑↑N=

Proof

Step Hyp Ref Expression
1 finxpeq2 n=↑↑n=↑↑
2 1 eqeq1d n=↑↑n=↑↑=
3 finxpeq2 n=m↑↑n=↑↑m
4 3 eqeq1d n=m↑↑n=↑↑m=
5 finxpeq2 n=sucm↑↑n=↑↑sucm
6 5 eqeq1d n=sucm↑↑n=↑↑sucm=
7 finxpeq2 n=N↑↑n=↑↑N
8 7 eqeq1d n=N↑↑n=↑↑N=
9 finxp0 ↑↑=
10 suceq m=sucm=suc
11 df-1o 1𝑜=suc
12 10 11 eqtr4di m=sucm=1𝑜
13 finxpeq2 sucm=1𝑜↑↑sucm=↑↑1𝑜
14 12 13 syl m=↑↑sucm=↑↑1𝑜
15 finxp1o ↑↑1𝑜=
16 14 15 eqtrdi m=↑↑sucm=
17 16 adantl mωm=↑↑sucm=
18 finxpsuc mωm↑↑sucm=↑↑m×
19 xp0 ↑↑m×=
20 18 19 eqtrdi mωm↑↑sucm=
21 17 20 pm2.61dane mω↑↑sucm=
22 21 a1d mω↑↑m=↑↑sucm=
23 2 4 6 8 9 22 finds Nω↑↑N=
24 finxpnom ¬Nω↑↑N=
25 23 24 pm2.61i ↑↑N=