Metamath Proof Explorer


Theorem finxp1o

Description: The value of Cartesian exponentiation at one. (Contributed by ML, 17-Oct-2020)

Ref Expression
Assertion finxp1o U↑↑1𝑜=U

Proof

Step Hyp Ref Expression
1 1onn 1𝑜ω
2 1 a1i yU1𝑜ω
3 finxpreclem1 yU=nω,xVifn=1𝑜xUifxV×Un1stxnx1𝑜y
4 1on 1𝑜On
5 1n0 1𝑜
6 nnlim 1𝑜ω¬Lim1𝑜
7 1 6 ax-mp ¬Lim1𝑜
8 rdgsucuni 1𝑜On1𝑜¬Lim1𝑜recnω,xVifn=1𝑜xUifxV×Un1stxnx1𝑜y1𝑜=nω,xVifn=1𝑜xUifxV×Un1stxnxrecnω,xVifn=1𝑜xUifxV×Un1stxnx1𝑜y1𝑜
9 4 5 7 8 mp3an recnω,xVifn=1𝑜xUifxV×Un1stxnx1𝑜y1𝑜=nω,xVifn=1𝑜xUifxV×Un1stxnxrecnω,xVifn=1𝑜xUifxV×Un1stxnx1𝑜y1𝑜
10 df-1o 1𝑜=suc
11 10 unieqi 1𝑜=suc
12 0elon On
13 12 onunisuci suc=
14 11 13 eqtri 1𝑜=
15 14 fveq2i recnω,xVifn=1𝑜xUifxV×Un1stxnx1𝑜y1𝑜=recnω,xVifn=1𝑜xUifxV×Un1stxnx1𝑜y
16 opex 1𝑜yV
17 16 rdg0 recnω,xVifn=1𝑜xUifxV×Un1stxnx1𝑜y=1𝑜y
18 15 17 eqtri recnω,xVifn=1𝑜xUifxV×Un1stxnx1𝑜y1𝑜=1𝑜y
19 18 fveq2i nω,xVifn=1𝑜xUifxV×Un1stxnxrecnω,xVifn=1𝑜xUifxV×Un1stxnx1𝑜y1𝑜=nω,xVifn=1𝑜xUifxV×Un1stxnx1𝑜y
20 9 19 eqtri recnω,xVifn=1𝑜xUifxV×Un1stxnx1𝑜y1𝑜=nω,xVifn=1𝑜xUifxV×Un1stxnx1𝑜y
21 3 20 eqtr4di yU=recnω,xVifn=1𝑜xUifxV×Un1stxnx1𝑜y1𝑜
22 df-finxp U↑↑1𝑜=y|1𝑜ω=recnω,xVifn=1𝑜xUifxV×Un1stxnx1𝑜y1𝑜
23 22 eqabri yU↑↑1𝑜1𝑜ω=recnω,xVifn=1𝑜xUifxV×Un1stxnx1𝑜y1𝑜
24 2 21 23 sylanbrc yUyU↑↑1𝑜
25 1 23 mpbiran yU↑↑1𝑜=recnω,xVifn=1𝑜xUifxV×Un1stxnx1𝑜y1𝑜
26 vex yV
27 20 eqcomi nω,xVifn=1𝑜xUifxV×Un1stxnx1𝑜y=recnω,xVifn=1𝑜xUifxV×Un1stxnx1𝑜y1𝑜
28 finxpreclem2 yV¬yU¬=nω,xVifn=1𝑜xUifxV×Un1stxnx1𝑜y
29 28 neqned yV¬yUnω,xVifn=1𝑜xUifxV×Un1stxnx1𝑜y
30 29 necomd yV¬yUnω,xVifn=1𝑜xUifxV×Un1stxnx1𝑜y
31 27 30 eqnetrrid yV¬yUrecnω,xVifn=1𝑜xUifxV×Un1stxnx1𝑜y1𝑜
32 31 necomd yV¬yUrecnω,xVifn=1𝑜xUifxV×Un1stxnx1𝑜y1𝑜
33 32 neneqd yV¬yU¬=recnω,xVifn=1𝑜xUifxV×Un1stxnx1𝑜y1𝑜
34 26 33 mpan ¬yU¬=recnω,xVifn=1𝑜xUifxV×Un1stxnx1𝑜y1𝑜
35 34 con4i =recnω,xVifn=1𝑜xUifxV×Un1stxnx1𝑜y1𝑜yU
36 25 35 sylbi yU↑↑1𝑜yU
37 24 36 impbii yUyU↑↑1𝑜
38 37 eqriv U=U↑↑1𝑜
39 38 eqcomi U↑↑1𝑜=U