Step |
Hyp |
Ref |
Expression |
1 |
|
1onn |
|
2 |
1
|
a1i |
|
3 |
|
finxpreclem1 |
|
4 |
|
1on |
|
5 |
|
1n0 |
|
6 |
|
nnlim |
|
7 |
1 6
|
ax-mp |
|
8 |
|
rdgsucuni |
|
9 |
4 5 7 8
|
mp3an |
|
10 |
|
df-1o |
|
11 |
10
|
unieqi |
|
12 |
|
0elon |
|
13 |
12
|
onunisuci |
|
14 |
11 13
|
eqtri |
|
15 |
14
|
fveq2i |
|
16 |
|
opex |
|
17 |
16
|
rdg0 |
|
18 |
15 17
|
eqtri |
|
19 |
18
|
fveq2i |
|
20 |
9 19
|
eqtri |
|
21 |
3 20
|
eqtr4di |
|
22 |
|
df-finxp |
|
23 |
22
|
abeq2i |
|
24 |
2 21 23
|
sylanbrc |
|
25 |
1 23
|
mpbiran |
|
26 |
|
vex |
|
27 |
20
|
eqcomi |
|
28 |
|
finxpreclem2 |
|
29 |
28
|
neqned |
|
30 |
29
|
necomd |
|
31 |
27 30
|
eqnetrrid |
|
32 |
31
|
necomd |
|
33 |
32
|
neneqd |
|
34 |
26 33
|
mpan |
|
35 |
34
|
con4i |
|
36 |
25 35
|
sylbi |
|
37 |
24 36
|
impbii |
|
38 |
37
|
eqriv |
|
39 |
38
|
eqcomi |
|