Metamath Proof Explorer


Theorem fival

Description: The set of all the finite intersections of the elements of A . (Contributed by FL, 27-Apr-2008) (Revised by Mario Carneiro, 24-Nov-2013)

Ref Expression
Assertion fival AVfiA=y|x𝒫AFiny=x

Proof

Step Hyp Ref Expression
1 df-fi fi=zVy|x𝒫zFiny=x
2 pweq z=A𝒫z=𝒫A
3 2 ineq1d z=A𝒫zFin=𝒫AFin
4 3 rexeqdv z=Ax𝒫zFiny=xx𝒫AFiny=x
5 4 abbidv z=Ay|x𝒫zFiny=x=y|x𝒫AFiny=x
6 elex AVAV
7 simpr x𝒫AFiny=xy=x
8 elinel1 x𝒫AFinx𝒫A
9 8 elpwid x𝒫AFinxA
10 eqvisset y=xxV
11 intex xxV
12 10 11 sylibr y=xx
13 intssuni2 xAxxA
14 9 12 13 syl2an x𝒫AFiny=xxA
15 7 14 eqsstrd x𝒫AFiny=xyA
16 velpw y𝒫AyA
17 15 16 sylibr x𝒫AFiny=xy𝒫A
18 17 rexlimiva x𝒫AFiny=xy𝒫A
19 18 abssi y|x𝒫AFiny=x𝒫A
20 uniexg AVAV
21 20 pwexd AV𝒫AV
22 ssexg y|x𝒫AFiny=x𝒫A𝒫AVy|x𝒫AFiny=xV
23 19 21 22 sylancr AVy|x𝒫AFiny=xV
24 1 5 6 23 fvmptd3 AVfiA=y|x𝒫AFiny=x