Metamath Proof Explorer


Theorem fldivndvdslt

Description: The floor of an integer divided by a nonzero integer not dividing the first integer is less than the integer divided by the positive integer. (Contributed by AV, 4-Jul-2021)

Ref Expression
Assertion fldivndvdslt KLL0¬LKKL<KL

Proof

Step Hyp Ref Expression
1 zre KK
2 1 adantr KLL0K
3 zre LL
4 3 ad2antrl KLL0L
5 simprr KLL0L0
6 2 4 5 redivcld KLL0KL
7 6 3adant3 KLL0¬LKKL
8 simprl KLL0L
9 simpl KLL0K
10 dvdsval2 LL0KLKKL
11 8 5 9 10 syl3anc KLL0LKKL
12 11 notbid KLL0¬LK¬KL
13 12 biimp3a KLL0¬LK¬KL
14 flltnz KL¬KLKL<KL
15 7 13 14 syl2anc KLL0¬LKKL<KL