Metamath Proof Explorer


Theorem fmla

Description: The set of all valid Godel formulas. (Contributed by AV, 20-Sep-2023)

Ref Expression
Assertion fmla Fmlaω=nωFmlan

Proof

Step Hyp Ref Expression
1 df-fmla Fmla=nsucωdomSatn
2 1 fveq1i Fmlaω=nsucωdomSatnω
3 omex ωV
4 eqidd ωVnsucωdomSatn=nsucωdomSatn
5 fveq2 n=ωSatn=Satω
6 5 dmeqd n=ωdomSatn=domSatω
7 6 adantl ωVn=ωdomSatn=domSatω
8 sucidg ωVωsucω
9 fvex SatωV
10 9 dmex domSatωV
11 10 a1i ωVdomSatωV
12 4 7 8 11 fvmptd ωVnsucωdomSatnω=domSatω
13 3 12 ax-mp nsucωdomSatnω=domSatω
14 3 sucid ωsucω
15 satf0sucom ωsucωSatω=recfVfxy|y=ufvfx=1stu𝑔1stviωx=𝑔i1stuxy|y=iωjωx=i𝑔jω
16 14 15 ax-mp Satω=recfVfxy|y=ufvfx=1stu𝑔1stviωx=𝑔i1stuxy|y=iωjωx=i𝑔jω
17 limom Limω
18 rdglim2a ωVLimωrecfVfxy|y=ufvfx=1stu𝑔1stviωx=𝑔i1stuxy|y=iωjωx=i𝑔jω=nωrecfVfxy|y=ufvfx=1stu𝑔1stviωx=𝑔i1stuxy|y=iωjωx=i𝑔jn
19 3 17 18 mp2an recfVfxy|y=ufvfx=1stu𝑔1stviωx=𝑔i1stuxy|y=iωjωx=i𝑔jω=nωrecfVfxy|y=ufvfx=1stu𝑔1stviωx=𝑔i1stuxy|y=iωjωx=i𝑔jn
20 16 19 eqtri Satω=nωrecfVfxy|y=ufvfx=1stu𝑔1stviωx=𝑔i1stuxy|y=iωjωx=i𝑔jn
21 20 dmeqi domSatω=domnωrecfVfxy|y=ufvfx=1stu𝑔1stviωx=𝑔i1stuxy|y=iωjωx=i𝑔jn
22 dmiun domnωrecfVfxy|y=ufvfx=1stu𝑔1stviωx=𝑔i1stuxy|y=iωjωx=i𝑔jn=nωdomrecfVfxy|y=ufvfx=1stu𝑔1stviωx=𝑔i1stuxy|y=iωjωx=i𝑔jn
23 elelsuc nωnsucω
24 fmlafv nsucωFmlan=domSatn
25 23 24 syl nωFmlan=domSatn
26 satf0sucom nsucωSatn=recfVfxy|y=ufvfx=1stu𝑔1stviωx=𝑔i1stuxy|y=iωjωx=i𝑔jn
27 23 26 syl nωSatn=recfVfxy|y=ufvfx=1stu𝑔1stviωx=𝑔i1stuxy|y=iωjωx=i𝑔jn
28 27 dmeqd nωdomSatn=domrecfVfxy|y=ufvfx=1stu𝑔1stviωx=𝑔i1stuxy|y=iωjωx=i𝑔jn
29 25 28 eqtr2d nωdomrecfVfxy|y=ufvfx=1stu𝑔1stviωx=𝑔i1stuxy|y=iωjωx=i𝑔jn=Fmlan
30 29 iuneq2i nωdomrecfVfxy|y=ufvfx=1stu𝑔1stviωx=𝑔i1stuxy|y=iωjωx=i𝑔jn=nωFmlan
31 21 22 30 3eqtri domSatω=nωFmlan
32 2 13 31 3eqtri Fmlaω=nωFmlan