Metamath Proof Explorer


Theorem fncoOLD

Description: Obsolete version of fnco as of 20-Sep-2024. (Contributed by NM, 22-May-2006) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion fncoOLD FFnAGFnBranGAFGFnB

Proof

Step Hyp Ref Expression
1 fnfun FFnAFunF
2 fnfun GFnBFunG
3 funco FunFFunGFunFG
4 1 2 3 syl2an FFnAGFnBFunFG
5 4 3adant3 FFnAGFnBranGAFunFG
6 fndm FFnAdomF=A
7 6 sseq2d FFnAranGdomFranGA
8 7 biimpar FFnAranGAranGdomF
9 dmcosseq ranGdomFdomFG=domG
10 8 9 syl FFnAranGAdomFG=domG
11 10 3adant2 FFnAGFnBranGAdomFG=domG
12 fndm GFnBdomG=B
13 12 3ad2ant2 FFnAGFnBranGAdomG=B
14 11 13 eqtrd FFnAGFnBranGAdomFG=B
15 df-fn FGFnBFunFGdomFG=B
16 5 14 15 sylanbrc FFnAGFnBranGAFGFnB