Description: If the domain of a function is countable, the function is countable. (Contributed by Thierry Arnoux, 29-Dec-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | fnct | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ctex | |
|
2 | 1 | adantl | |
3 | fndm | |
|
4 | 3 | eleq1d | |
5 | 4 | adantr | |
6 | 2 5 | mpbird | |
7 | fnfun | |
|
8 | 7 | adantr | |
9 | funrnex | |
|
10 | 6 8 9 | sylc | |
11 | 2 10 | xpexd | |
12 | simpl | |
|
13 | dffn3 | |
|
14 | 12 13 | sylib | |
15 | fssxp | |
|
16 | 14 15 | syl | |
17 | ssdomg | |
|
18 | 11 16 17 | sylc | |
19 | xpdom1g | |
|
20 | 10 19 | sylancom | |
21 | omex | |
|
22 | fnrndomg | |
|
23 | 2 12 22 | sylc | |
24 | domtr | |
|
25 | 23 24 | sylancom | |
26 | xpdom2g | |
|
27 | 21 25 26 | sylancr | |
28 | domtr | |
|
29 | 20 27 28 | syl2anc | |
30 | xpomen | |
|
31 | domentr | |
|
32 | 29 30 31 | sylancl | |
33 | domtr | |
|
34 | 18 32 33 | syl2anc | |