Metamath Proof Explorer


Theorem fnct

Description: If the domain of a function is countable, the function is countable. (Contributed by Thierry Arnoux, 29-Dec-2016)

Ref Expression
Assertion fnct FFnAAωFω

Proof

Step Hyp Ref Expression
1 ctex AωAV
2 1 adantl FFnAAωAV
3 fndm FFnAdomF=A
4 3 eleq1d FFnAdomFVAV
5 4 adantr FFnAAωdomFVAV
6 2 5 mpbird FFnAAωdomFV
7 fnfun FFnAFunF
8 7 adantr FFnAAωFunF
9 funrnex domFVFunFranFV
10 6 8 9 sylc FFnAAωranFV
11 2 10 xpexd FFnAAωA×ranFV
12 simpl FFnAAωFFnA
13 dffn3 FFnAF:AranF
14 12 13 sylib FFnAAωF:AranF
15 fssxp F:AranFFA×ranF
16 14 15 syl FFnAAωFA×ranF
17 ssdomg A×ranFVFA×ranFFA×ranF
18 11 16 17 sylc FFnAAωFA×ranF
19 xpdom1g ranFVAωA×ranFω×ranF
20 10 19 sylancom FFnAAωA×ranFω×ranF
21 omex ωV
22 fnrndomg AVFFnAranFA
23 2 12 22 sylc FFnAAωranFA
24 domtr ranFAAωranFω
25 23 24 sylancom FFnAAωranFω
26 xpdom2g ωVranFωω×ranFω×ω
27 21 25 26 sylancr FFnAAωω×ranFω×ω
28 domtr A×ranFω×ranFω×ranFω×ωA×ranFω×ω
29 20 27 28 syl2anc FFnAAωA×ranFω×ω
30 xpomen ω×ωω
31 domentr A×ranFω×ωω×ωωA×ranFω
32 29 30 31 sylancl FFnAAωA×ranFω
33 domtr FA×ranFA×ranFωFω
34 18 32 33 syl2anc FFnAAωFω