Metamath Proof Explorer


Theorem fnopabco

Description: Composition of a function with a function abstraction. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 27-Dec-2014)

Ref Expression
Hypotheses fnopabco.1 xABC
fnopabco.2 F=xy|xAy=B
fnopabco.3 G=xy|xAy=HB
Assertion fnopabco HFnCG=HF

Proof

Step Hyp Ref Expression
1 fnopabco.1 xABC
2 fnopabco.2 F=xy|xAy=B
3 fnopabco.3 G=xy|xAy=HB
4 df-mpt xAHB=xy|xAy=HB
5 3 4 eqtr4i G=xAHB
6 1 adantl HFnCxABC
7 df-mpt xAB=xy|xAy=B
8 2 7 eqtr4i F=xAB
9 8 a1i HFnCF=xAB
10 dffn5 HFnCH=yCHy
11 10 biimpi HFnCH=yCHy
12 fveq2 y=BHy=HB
13 6 9 11 12 fmptco HFnCHF=xAHB
14 5 13 eqtr4id HFnCG=HF