Metamath Proof Explorer


Theorem fnoprabg

Description: Functionality and domain of an operation class abstraction. (Contributed by NM, 28-Aug-2007)

Ref Expression
Assertion fnoprabg xyφ∃!zψxyz|φψFnxy|φ

Proof

Step Hyp Ref Expression
1 eumo ∃!zψ*zψ
2 1 imim2i φ∃!zψφ*zψ
3 moanimv *zφψφ*zψ
4 2 3 sylibr φ∃!zψ*zφψ
5 4 2alimi xyφ∃!zψxy*zφψ
6 funoprabg xy*zφψFunxyz|φψ
7 5 6 syl xyφ∃!zψFunxyz|φψ
8 dmoprab domxyz|φψ=xy|zφψ
9 nfa1 xxyφ∃!zψ
10 nfa2 yxyφ∃!zψ
11 simpl φψφ
12 11 exlimiv zφψφ
13 euex ∃!zψzψ
14 13 imim2i φ∃!zψφzψ
15 14 ancld φ∃!zψφφzψ
16 19.42v zφψφzψ
17 15 16 imbitrrdi φ∃!zψφzφψ
18 12 17 impbid2 φ∃!zψzφψφ
19 18 sps yφ∃!zψzφψφ
20 19 sps xyφ∃!zψzφψφ
21 9 10 20 opabbid xyφ∃!zψxy|zφψ=xy|φ
22 8 21 eqtrid xyφ∃!zψdomxyz|φψ=xy|φ
23 df-fn xyz|φψFnxy|φFunxyz|φψdomxyz|φψ=xy|φ
24 7 22 23 sylanbrc xyφ∃!zψxyz|φψFnxy|φ