Metamath Proof Explorer


Theorem fnresfnco

Description: Composition of two functions, similar to fnco . (Contributed by Alexander van der Vekens, 25-Jul-2017)

Ref Expression
Assertion fnresfnco FranGFnranGGFnBFGFnB

Proof

Step Hyp Ref Expression
1 fnfun FranGFnranGFunFranG
2 fnfun GFnBFunG
3 funresfunco FunFranGFunGFunFG
4 1 2 3 syl2an FranGFnranGGFnBFunFG
5 fndm FranGFnranGdomFranG=ranG
6 dmres domFranG=ranGdomF
7 6 eqeq1i domFranG=ranGranGdomF=ranG
8 df-ss ranGdomFranGdomF=ranG
9 7 8 sylbb2 domFranG=ranGranGdomF
10 5 9 syl FranGFnranGranGdomF
11 10 adantr FranGFnranGGFnBranGdomF
12 dmcosseq ranGdomFdomFG=domG
13 11 12 syl FranGFnranGGFnBdomFG=domG
14 fndm GFnBdomG=B
15 14 adantl FranGFnranGGFnBdomG=B
16 13 15 eqtrd FranGFnranGGFnBdomFG=B
17 df-fn FGFnBFunFGdomFG=B
18 4 16 17 sylanbrc FranGFnranGGFnBFGFnB