Metamath Proof Explorer


Theorem fo2ndf

Description: The 2nd (second component of an ordered pair) function restricted to a function F is a function from F onto the range of F . (Contributed by Alexander van der Vekens, 4-Feb-2018)

Ref Expression
Assertion fo2ndf F:AB2ndF:FontoranF

Proof

Step Hyp Ref Expression
1 ffrn F:ABF:AranF
2 f2ndf F:AranF2ndF:FranF
3 1 2 syl F:AB2ndF:FranF
4 ffn F:ABFFnA
5 dffn3 FFnAF:AranF
6 5 2 sylbi FFnA2ndF:FranF
7 4 6 syl F:AB2ndF:FranF
8 7 frnd F:ABran2ndFranF
9 elrn2g yranFyranFxxyF
10 9 ibi yranFxxyF
11 fvres xyF2ndFxy=2ndxy
12 11 adantl F:ABxyF2ndFxy=2ndxy
13 vex xV
14 vex yV
15 13 14 op2nd 2ndxy=y
16 12 15 eqtr2di F:ABxyFy=2ndFxy
17 f2ndf F:AB2ndF:FB
18 17 ffnd F:AB2ndFFnF
19 fnfvelrn 2ndFFnFxyF2ndFxyran2ndF
20 18 19 sylan F:ABxyF2ndFxyran2ndF
21 16 20 eqeltrd F:ABxyFyran2ndF
22 21 ex F:ABxyFyran2ndF
23 22 exlimdv F:ABxxyFyran2ndF
24 10 23 syl5 F:AByranFyran2ndF
25 24 ssrdv F:ABranFran2ndF
26 8 25 eqssd F:ABran2ndF=ranF
27 dffo2 2ndF:FontoranF2ndF:FranFran2ndF=ranF
28 3 26 27 sylanbrc F:AB2ndF:FontoranF