Metamath Proof Explorer


Theorem focofo

Description: Composition of onto functions. Generalisation of foco . (Contributed by AV, 29-Sep-2024)

Ref Expression
Assertion focofo F:AontoBFunGAranGFG:G-1AontoB

Proof

Step Hyp Ref Expression
1 fof F:AontoBF:AB
2 fcof F:ABFunGFG:G-1AB
3 1 2 sylan F:AontoBFunGFG:G-1AB
4 3 3adant3 F:AontoBFunGAranGFG:G-1AB
5 rnco ranFG=ranFranG
6 1 freld F:AontoBRelF
7 6 3ad2ant1 F:AontoBFunGAranGRelF
8 fdm F:ABdomF=A
9 8 eqcomd F:ABA=domF
10 1 9 syl F:AontoBA=domF
11 10 sseq1d F:AontoBAranGdomFranG
12 11 biimpa F:AontoBAranGdomFranG
13 relssres RelFdomFranGFranG=F
14 13 rneqd RelFdomFranGranFranG=ranF
15 7 12 14 3imp3i2an F:AontoBFunGAranGranFranG=ranF
16 forn F:AontoBranF=B
17 16 3ad2ant1 F:AontoBFunGAranGranF=B
18 15 17 eqtrd F:AontoBFunGAranGranFranG=B
19 5 18 eqtrid F:AontoBFunGAranGranFG=B
20 dffo2 FG:G-1AontoBFG:G-1ABranFG=B
21 4 19 20 sylanbrc F:AontoBFunGAranGFG:G-1AontoB