Metamath Proof Explorer


Theorem fourier

Description: Fourier series convergence for periodic, piecewise smooth functions. The series converges to the average value of the left and the right limit of the function. Thus, if the function is continuous at a given point, the series converges exactly to the function value, see fouriercnp . Notice that for a piecewise smooth function, the left and right limits always exist, see fourier2 for an alternative form of the theorem that makes this fact explicit. When the first derivative is continuous, a simpler version of the theorem can be stated, see fouriercn . (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourier.f F:
fourier.t T=2π
fourier.per xFx+T=Fx
fourier.g G=Fππ
fourier.dmdv ππdomGFin
fourier.dvcn G:domGcn
fourier.rlim xππdomGGx+∞limx
fourier.llim xππdomGG−∞xlimx
fourier.x X
fourier.l LF−∞XlimX
fourier.r RFX+∞limX
fourier.a A=n0ππFxcosnxdxπ
fourier.b B=nππFxsinnxdxπ
Assertion fourier A02+nAncosnX+BnsinnX=L+R2

Proof

Step Hyp Ref Expression
1 fourier.f F:
2 fourier.t T=2π
3 fourier.per xFx+T=Fx
4 fourier.g G=Fππ
5 fourier.dmdv ππdomGFin
6 fourier.dvcn G:domGcn
7 fourier.rlim xππdomGGx+∞limx
8 fourier.llim xππdomGG−∞xlimx
9 fourier.x X
10 fourier.l LF−∞XlimX
11 fourier.r RFX+∞limX
12 fourier.a A=n0ππFxcosnxdxπ
13 fourier.b B=nππFxsinnxdxπ
14 1 a1i F:
15 3 adantl xFx+T=Fx
16 5 a1i ππdomGFin
17 6 a1i G:domGcn
18 7 adantl xππdomGGx+∞limx
19 8 adantl xππdomGG−∞xlimx
20 9 a1i X
21 10 a1i LF−∞XlimX
22 11 a1i RFX+∞limX
23 14 2 15 4 16 17 18 19 20 21 22 12 13 fourierd A02+nAncosnX+BnsinnX=L+R2
24 23 mptru A02+nAncosnX+BnsinnX=L+R2