Description: Fourier series convergence, for a piecewise smooth function. Here it is also proven the existence of the left and right limits of F at any given point X . See fourierd for a comparison. (Contributed by Glauco Siliprandi, 11-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fourier2.f | |
|
fourier2.t | |
||
fourier2.per | |
||
fourier2.g | |
||
fourier2.dmdv | |
||
fourier2.dvcn | |
||
fourier2.rlim | |
||
fourier2.llim | |
||
fourier2.x | |
||
fourier2.a | |
||
fourier2.b | |
||
Assertion | fourier2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fourier2.f | |
|
2 | fourier2.t | |
|
3 | fourier2.per | |
|
4 | fourier2.g | |
|
5 | fourier2.dmdv | |
|
6 | fourier2.dvcn | |
|
7 | fourier2.rlim | |
|
8 | fourier2.llim | |
|
9 | fourier2.x | |
|
10 | fourier2.a | |
|
11 | fourier2.b | |
|
12 | 1 2 3 4 5 6 7 8 9 | fourierdlem106 | |
13 | 12 | simpld | |
14 | n0 | |
|
15 | 13 14 | sylib | |
16 | simpr | |
|
17 | 12 | simprd | |
18 | n0 | |
|
19 | 17 18 | sylib | |
20 | 19 | adantr | |
21 | simpr | |
|
22 | 1 | ad2antrr | |
23 | 3 | ad4ant14 | |
24 | 5 | ad2antrr | |
25 | 6 | ad2antrr | |
26 | 7 | ad4ant14 | |
27 | 8 | ad4ant14 | |
28 | 9 | ad2antrr | |
29 | 16 | adantr | |
30 | 22 2 23 4 24 25 26 27 28 29 21 10 11 | fourierd | |
31 | 21 30 | jca | |
32 | 31 | ex | |
33 | 32 | eximdv | |
34 | 20 33 | mpd | |
35 | df-rex | |
|
36 | 34 35 | sylibr | |
37 | 16 36 | jca | |
38 | 37 | ex | |
39 | 38 | eximdv | |
40 | 15 39 | mpd | |
41 | df-rex | |
|
42 | 40 41 | sylibr | |