Metamath Proof Explorer


Theorem fourier2

Description: Fourier series convergence, for a piecewise smooth function. Here it is also proven the existence of the left and right limits of F at any given point X . See fourierd for a comparison. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourier2.f φF:
fourier2.t T=2π
fourier2.per φxFx+T=Fx
fourier2.g G=Fππ
fourier2.dmdv φππdomGFin
fourier2.dvcn φG:domGcn
fourier2.rlim φxππdomGGx+∞limx
fourier2.llim φxππdomGG−∞xlimx
fourier2.x φX
fourier2.a A=n0ππFxcosnxdxπ
fourier2.b B=nππFxsinnxdxπ
Assertion fourier2 φlF−∞XlimXrFX+∞limXA02+nAncosnX+BnsinnX=l+r2

Proof

Step Hyp Ref Expression
1 fourier2.f φF:
2 fourier2.t T=2π
3 fourier2.per φxFx+T=Fx
4 fourier2.g G=Fππ
5 fourier2.dmdv φππdomGFin
6 fourier2.dvcn φG:domGcn
7 fourier2.rlim φxππdomGGx+∞limx
8 fourier2.llim φxππdomGG−∞xlimx
9 fourier2.x φX
10 fourier2.a A=n0ππFxcosnxdxπ
11 fourier2.b B=nππFxsinnxdxπ
12 1 2 3 4 5 6 7 8 9 fourierdlem106 φF−∞XlimXFX+∞limX
13 12 simpld φF−∞XlimX
14 n0 F−∞XlimXllF−∞XlimX
15 13 14 sylib φllF−∞XlimX
16 simpr φlF−∞XlimXlF−∞XlimX
17 12 simprd φFX+∞limX
18 n0 FX+∞limXrrFX+∞limX
19 17 18 sylib φrrFX+∞limX
20 19 adantr φlF−∞XlimXrrFX+∞limX
21 simpr φlF−∞XlimXrFX+∞limXrFX+∞limX
22 1 ad2antrr φlF−∞XlimXrFX+∞limXF:
23 3 ad4ant14 φlF−∞XlimXrFX+∞limXxFx+T=Fx
24 5 ad2antrr φlF−∞XlimXrFX+∞limXππdomGFin
25 6 ad2antrr φlF−∞XlimXrFX+∞limXG:domGcn
26 7 ad4ant14 φlF−∞XlimXrFX+∞limXxππdomGGx+∞limx
27 8 ad4ant14 φlF−∞XlimXrFX+∞limXxππdomGG−∞xlimx
28 9 ad2antrr φlF−∞XlimXrFX+∞limXX
29 16 adantr φlF−∞XlimXrFX+∞limXlF−∞XlimX
30 22 2 23 4 24 25 26 27 28 29 21 10 11 fourierd φlF−∞XlimXrFX+∞limXA02+nAncosnX+BnsinnX=l+r2
31 21 30 jca φlF−∞XlimXrFX+∞limXrFX+∞limXA02+nAncosnX+BnsinnX=l+r2
32 31 ex φlF−∞XlimXrFX+∞limXrFX+∞limXA02+nAncosnX+BnsinnX=l+r2
33 32 eximdv φlF−∞XlimXrrFX+∞limXrrFX+∞limXA02+nAncosnX+BnsinnX=l+r2
34 20 33 mpd φlF−∞XlimXrrFX+∞limXA02+nAncosnX+BnsinnX=l+r2
35 df-rex rFX+∞limXA02+nAncosnX+BnsinnX=l+r2rrFX+∞limXA02+nAncosnX+BnsinnX=l+r2
36 34 35 sylibr φlF−∞XlimXrFX+∞limXA02+nAncosnX+BnsinnX=l+r2
37 16 36 jca φlF−∞XlimXlF−∞XlimXrFX+∞limXA02+nAncosnX+BnsinnX=l+r2
38 37 ex φlF−∞XlimXlF−∞XlimXrFX+∞limXA02+nAncosnX+BnsinnX=l+r2
39 38 eximdv φllF−∞XlimXllF−∞XlimXrFX+∞limXA02+nAncosnX+BnsinnX=l+r2
40 15 39 mpd φllF−∞XlimXrFX+∞limXA02+nAncosnX+BnsinnX=l+r2
41 df-rex lF−∞XlimXrFX+∞limXA02+nAncosnX+BnsinnX=l+r2llF−∞XlimXrFX+∞limXA02+nAncosnX+BnsinnX=l+r2
42 40 41 sylibr φlF−∞XlimXrFX+∞limXA02+nAncosnX+BnsinnX=l+r2