Metamath Proof Explorer


Theorem fouriercnp

Description: If F is continuous at the point X , then its Fourier series at X , converges to ( FX ) . (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fouriercnp.f φ F :
fouriercnp.t T = 2 π
fouriercnp.per φ x F x + T = F x
fouriercnp.g G = F π π
fouriercnp.dmdv φ π π dom G Fin
fouriercnp.dvcn φ G : dom G cn
fouriercnp.rlim φ x π π dom G G x +∞ lim x
fouriercnp.llim φ x π π dom G G −∞ x lim x
fouriercnp.j J = topGen ran .
fouriercnp.cnp φ F J CnP J X
fouriercnp.a A = n 0 π π F x cos n x dx π
fouriercnp.b B = n π π F x sin n x dx π
Assertion fouriercnp φ A 0 2 + n A n cos n X + B n sin n X = F X

Proof

Step Hyp Ref Expression
1 fouriercnp.f φ F :
2 fouriercnp.t T = 2 π
3 fouriercnp.per φ x F x + T = F x
4 fouriercnp.g G = F π π
5 fouriercnp.dmdv φ π π dom G Fin
6 fouriercnp.dvcn φ G : dom G cn
7 fouriercnp.rlim φ x π π dom G G x +∞ lim x
8 fouriercnp.llim φ x π π dom G G −∞ x lim x
9 fouriercnp.j J = topGen ran .
10 fouriercnp.cnp φ F J CnP J X
11 fouriercnp.a A = n 0 π π F x cos n x dx π
12 fouriercnp.b B = n π π F x sin n x dx π
13 uniretop = topGen ran .
14 9 unieqi J = topGen ran .
15 13 14 eqtr4i = J
16 15 cnprcl F J CnP J X X
17 10 16 syl φ X
18 limcresi F lim X F −∞ X lim X
19 eqid TopOpen fld = TopOpen fld
20 19 tgioo2 topGen ran . = TopOpen fld 𝑡
21 9 20 eqtri J = TopOpen fld 𝑡
22 21 oveq2i J CnP J = J CnP TopOpen fld 𝑡
23 22 fveq1i J CnP J X = J CnP TopOpen fld 𝑡 X
24 10 23 eleqtrdi φ F J CnP TopOpen fld 𝑡 X
25 19 cnfldtop TopOpen fld Top
26 25 a1i φ TopOpen fld Top
27 ax-resscn
28 27 a1i φ
29 unicntop = TopOpen fld
30 15 29 cnprest2 TopOpen fld Top F : F J CnP TopOpen fld X F J CnP TopOpen fld 𝑡 X
31 26 1 28 30 syl3anc φ F J CnP TopOpen fld X F J CnP TopOpen fld 𝑡 X
32 24 31 mpbird φ F J CnP TopOpen fld X
33 19 21 cnplimc X F J CnP TopOpen fld X F : F X F lim X
34 27 17 33 sylancr φ F J CnP TopOpen fld X F : F X F lim X
35 32 34 mpbid φ F : F X F lim X
36 35 simprd φ F X F lim X
37 18 36 sseldi φ F X F −∞ X lim X
38 limcresi F lim X F X +∞ lim X
39 38 36 sseldi φ F X F X +∞ lim X
40 1 2 3 4 5 6 7 8 17 37 39 11 12 fourierd φ A 0 2 + n A n cos n X + B n sin n X = F X + F X 2
41 1 17 ffvelrnd φ F X
42 41 recnd φ F X
43 42 2timesd φ 2 F X = F X + F X
44 43 eqcomd φ F X + F X = 2 F X
45 44 oveq1d φ F X + F X 2 = 2 F X 2
46 2cnd φ 2
47 2ne0 2 0
48 47 a1i φ 2 0
49 42 46 48 divcan3d φ 2 F X 2 = F X
50 40 45 49 3eqtrd φ A 0 2 + n A n cos n X + B n sin n X = F X