Metamath Proof Explorer


Theorem fourierdlem36

Description: F is an isomorphism. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem36.a φ A Fin
fourierdlem36.assr φ A
fourierdlem36.f F = ι f | f Isom < , < 0 N A
fourierdlem36.n N = A 1
Assertion fourierdlem36 φ F Isom < , < 0 N A

Proof

Step Hyp Ref Expression
1 fourierdlem36.a φ A Fin
2 fourierdlem36.assr φ A
3 fourierdlem36.f F = ι f | f Isom < , < 0 N A
4 fourierdlem36.n N = A 1
5 ltso < Or
6 soss A < Or < Or A
7 2 5 6 mpisyl φ < Or A
8 0zd φ 0
9 eqid A + 0 - 1 = A + 0 - 1
10 1 7 8 9 fzisoeu φ ∃! f f Isom < , < 0 A + 0 - 1 A
11 hashcl A Fin A 0
12 1 11 syl φ A 0
13 12 nn0cnd φ A
14 1cnd φ 1
15 13 14 negsubd φ A + -1 = A 1
16 df-neg 1 = 0 1
17 16 eqcomi 0 1 = 1
18 17 oveq2i A + 0 - 1 = A + -1
19 15 18 4 3eqtr4g φ A + 0 - 1 = N
20 19 oveq2d φ 0 A + 0 - 1 = 0 N
21 isoeq4 0 A + 0 - 1 = 0 N f Isom < , < 0 A + 0 - 1 A f Isom < , < 0 N A
22 20 21 syl φ f Isom < , < 0 A + 0 - 1 A f Isom < , < 0 N A
23 22 eubidv φ ∃! f f Isom < , < 0 A + 0 - 1 A ∃! f f Isom < , < 0 N A
24 10 23 mpbid φ ∃! f f Isom < , < 0 N A
25 iotacl ∃! f f Isom < , < 0 N A ι f | f Isom < , < 0 N A f | f Isom < , < 0 N A
26 24 25 syl φ ι f | f Isom < , < 0 N A f | f Isom < , < 0 N A
27 3 26 eqeltrid φ F f | f Isom < , < 0 N A
28 iotaex ι f | f Isom < , < 0 N A V
29 3 28 eqeltri F V
30 isoeq1 f = F f Isom < , < 0 N A F Isom < , < 0 N A
31 29 30 elab F f | f Isom < , < 0 N A F Isom < , < 0 N A
32 27 31 sylib φ F Isom < , < 0 N A