Metamath Proof Explorer


Theorem fresaunres2

Description: From the union of two functions that agree on the domain overlap, either component can be recovered by restriction. (Contributed by Stefan O'Rear, 9-Oct-2014)

Ref Expression
Assertion fresaunres2 F:ACG:BCFAB=GABFGB=G

Proof

Step Hyp Ref Expression
1 ffn F:ACFFnA
2 ffn G:BCGFnB
3 id FAB=GABFAB=GAB
4 resasplit FFnAGFnBFAB=GABFG=FABFABGBA
5 1 2 3 4 syl3an F:ACG:BCFAB=GABFG=FABFABGBA
6 5 reseq1d F:ACG:BCFAB=GABFGB=FABFABGBAB
7 resundir FABFABGBAB=FABBFABGBAB
8 inss2 ABB
9 resabs2 ABBFABB=FAB
10 8 9 ax-mp FABB=FAB
11 resundir FABGBAB=FABBGBAB
12 10 11 uneq12i FABBFABGBAB=FABFABBGBAB
13 dmres domFABB=BdomFAB
14 dmres domFAB=ABdomF
15 14 ineq2i BdomFAB=BABdomF
16 disjdif BAB=
17 16 ineq1i BABdomF=domF
18 inass BABdomF=BABdomF
19 0in domF=
20 17 18 19 3eqtr3i BABdomF=
21 15 20 eqtri BdomFAB=
22 13 21 eqtri domFABB=
23 relres RelFABB
24 reldm0 RelFABBFABB=domFABB=
25 23 24 ax-mp FABB=domFABB=
26 22 25 mpbir FABB=
27 difss BAB
28 resabs2 BABGBAB=GBA
29 27 28 ax-mp GBAB=GBA
30 26 29 uneq12i FABBGBAB=GBA
31 30 uneq2i FABFABBGBAB=FABGBA
32 simp3 F:ACG:BCFAB=GABFAB=GAB
33 32 uneq1d F:ACG:BCFAB=GABFABGBA=GABGBA
34 uncom GBA=GBA
35 un0 GBA=GBA
36 34 35 eqtri GBA=GBA
37 36 uneq2i GABGBA=GABGBA
38 resundi GABBA=GABGBA
39 incom AB=BA
40 39 uneq1i ABBA=BABA
41 inundif BABA=B
42 40 41 eqtri ABBA=B
43 42 reseq2i GABBA=GB
44 fnresdm GFnBGB=G
45 2 44 syl G:BCGB=G
46 45 adantl F:ACG:BCGB=G
47 43 46 eqtrid F:ACG:BCGABBA=G
48 38 47 eqtr3id F:ACG:BCGABGBA=G
49 37 48 eqtrid F:ACG:BCGABGBA=G
50 49 3adant3 F:ACG:BCFAB=GABGABGBA=G
51 33 50 eqtrd F:ACG:BCFAB=GABFABGBA=G
52 31 51 eqtrid F:ACG:BCFAB=GABFABFABBGBAB=G
53 12 52 eqtrid F:ACG:BCFAB=GABFABBFABGBAB=G
54 7 53 eqtrid F:ACG:BCFAB=GABFABFABGBAB=G
55 6 54 eqtrd F:ACG:BCFAB=GABFGB=G