Metamath Proof Explorer


Theorem frgpeccl

Description: Closure of the quotient map in a free group. (Contributed by Mario Carneiro, 1-Oct-2015)

Ref Expression
Hypotheses frgp0.m G=freeGrpI
frgp0.r ˙=~FGI
frgpeccl.w W=IWordI×2𝑜
frgpeccl.b B=BaseG
Assertion frgpeccl XWX˙B

Proof

Step Hyp Ref Expression
1 frgp0.m G=freeGrpI
2 frgp0.r ˙=~FGI
3 frgpeccl.w W=IWordI×2𝑜
4 frgpeccl.b B=BaseG
5 2 fvexi ˙V
6 5 ecelqsi XWX˙W/˙
7 3 efgrcl XWIVW=WordI×2𝑜
8 7 simpld XWIV
9 eqid freeMndI×2𝑜=freeMndI×2𝑜
10 1 9 2 frgpval IVG=freeMndI×2𝑜/𝑠˙
11 8 10 syl XWG=freeMndI×2𝑜/𝑠˙
12 7 simprd XWW=WordI×2𝑜
13 2on 2𝑜On
14 xpexg IV2𝑜OnI×2𝑜V
15 8 13 14 sylancl XWI×2𝑜V
16 eqid BasefreeMndI×2𝑜=BasefreeMndI×2𝑜
17 9 16 frmdbas I×2𝑜VBasefreeMndI×2𝑜=WordI×2𝑜
18 15 17 syl XWBasefreeMndI×2𝑜=WordI×2𝑜
19 12 18 eqtr4d XWW=BasefreeMndI×2𝑜
20 5 a1i XW˙V
21 fvexd XWfreeMndI×2𝑜V
22 11 19 20 21 qusbas XWW/˙=BaseG
23 22 4 eqtr4di XWW/˙=B
24 6 23 eleqtrd XWX˙B