Metamath Proof Explorer


Theorem frgr1v

Description: Any graph with (at most) one vertex is a friendship graph. (Contributed by Alexander van der Vekens, 4-Oct-2017) (Revised by AV, 29-Mar-2021)

Ref Expression
Assertion frgr1v G USGraph Vtx G = N G FriendGraph

Proof

Step Hyp Ref Expression
1 simpl G USGraph Vtx G = N G USGraph
2 ral0 l ∃! x N x N x l Edg G
3 sneq k = N k = N
4 3 difeq2d k = N N k = N N
5 difid N N =
6 4 5 eqtrdi k = N N k =
7 preq2 k = N x k = x N
8 7 preq1d k = N x k x l = x N x l
9 8 sseq1d k = N x k x l Edg G x N x l Edg G
10 9 reubidv k = N ∃! x N x k x l Edg G ∃! x N x N x l Edg G
11 6 10 raleqbidv k = N l N k ∃! x N x k x l Edg G l ∃! x N x N x l Edg G
12 11 ralsng N V k N l N k ∃! x N x k x l Edg G l ∃! x N x N x l Edg G
13 2 12 mpbiri N V k N l N k ∃! x N x k x l Edg G
14 snprc ¬ N V N =
15 rzal N = k N l N k ∃! x N x k x l Edg G
16 14 15 sylbi ¬ N V k N l N k ∃! x N x k x l Edg G
17 13 16 pm2.61i k N l N k ∃! x N x k x l Edg G
18 id Vtx G = N Vtx G = N
19 difeq1 Vtx G = N Vtx G k = N k
20 reueq1 Vtx G = N ∃! x Vtx G x k x l Edg G ∃! x N x k x l Edg G
21 19 20 raleqbidv Vtx G = N l Vtx G k ∃! x Vtx G x k x l Edg G l N k ∃! x N x k x l Edg G
22 18 21 raleqbidv Vtx G = N k Vtx G l Vtx G k ∃! x Vtx G x k x l Edg G k N l N k ∃! x N x k x l Edg G
23 22 adantl G USGraph Vtx G = N k Vtx G l Vtx G k ∃! x Vtx G x k x l Edg G k N l N k ∃! x N x k x l Edg G
24 17 23 mpbiri G USGraph Vtx G = N k Vtx G l Vtx G k ∃! x Vtx G x k x l Edg G
25 eqid Vtx G = Vtx G
26 eqid Edg G = Edg G
27 25 26 isfrgr G FriendGraph G USGraph k Vtx G l Vtx G k ∃! x Vtx G x k x l Edg G
28 1 24 27 sylanbrc G USGraph Vtx G = N G FriendGraph