| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl |
⊢ ( ( 𝐺 ∈ USGraph ∧ ( Vtx ‘ 𝐺 ) = { 𝑁 } ) → 𝐺 ∈ USGraph ) |
| 2 |
|
ral0 |
⊢ ∀ 𝑙 ∈ ∅ ∃! 𝑥 ∈ { 𝑁 } { { 𝑥 , 𝑁 } , { 𝑥 , 𝑙 } } ⊆ ( Edg ‘ 𝐺 ) |
| 3 |
|
sneq |
⊢ ( 𝑘 = 𝑁 → { 𝑘 } = { 𝑁 } ) |
| 4 |
3
|
difeq2d |
⊢ ( 𝑘 = 𝑁 → ( { 𝑁 } ∖ { 𝑘 } ) = ( { 𝑁 } ∖ { 𝑁 } ) ) |
| 5 |
|
difid |
⊢ ( { 𝑁 } ∖ { 𝑁 } ) = ∅ |
| 6 |
4 5
|
eqtrdi |
⊢ ( 𝑘 = 𝑁 → ( { 𝑁 } ∖ { 𝑘 } ) = ∅ ) |
| 7 |
|
preq2 |
⊢ ( 𝑘 = 𝑁 → { 𝑥 , 𝑘 } = { 𝑥 , 𝑁 } ) |
| 8 |
7
|
preq1d |
⊢ ( 𝑘 = 𝑁 → { { 𝑥 , 𝑘 } , { 𝑥 , 𝑙 } } = { { 𝑥 , 𝑁 } , { 𝑥 , 𝑙 } } ) |
| 9 |
8
|
sseq1d |
⊢ ( 𝑘 = 𝑁 → ( { { 𝑥 , 𝑘 } , { 𝑥 , 𝑙 } } ⊆ ( Edg ‘ 𝐺 ) ↔ { { 𝑥 , 𝑁 } , { 𝑥 , 𝑙 } } ⊆ ( Edg ‘ 𝐺 ) ) ) |
| 10 |
9
|
reubidv |
⊢ ( 𝑘 = 𝑁 → ( ∃! 𝑥 ∈ { 𝑁 } { { 𝑥 , 𝑘 } , { 𝑥 , 𝑙 } } ⊆ ( Edg ‘ 𝐺 ) ↔ ∃! 𝑥 ∈ { 𝑁 } { { 𝑥 , 𝑁 } , { 𝑥 , 𝑙 } } ⊆ ( Edg ‘ 𝐺 ) ) ) |
| 11 |
6 10
|
raleqbidv |
⊢ ( 𝑘 = 𝑁 → ( ∀ 𝑙 ∈ ( { 𝑁 } ∖ { 𝑘 } ) ∃! 𝑥 ∈ { 𝑁 } { { 𝑥 , 𝑘 } , { 𝑥 , 𝑙 } } ⊆ ( Edg ‘ 𝐺 ) ↔ ∀ 𝑙 ∈ ∅ ∃! 𝑥 ∈ { 𝑁 } { { 𝑥 , 𝑁 } , { 𝑥 , 𝑙 } } ⊆ ( Edg ‘ 𝐺 ) ) ) |
| 12 |
11
|
ralsng |
⊢ ( 𝑁 ∈ V → ( ∀ 𝑘 ∈ { 𝑁 } ∀ 𝑙 ∈ ( { 𝑁 } ∖ { 𝑘 } ) ∃! 𝑥 ∈ { 𝑁 } { { 𝑥 , 𝑘 } , { 𝑥 , 𝑙 } } ⊆ ( Edg ‘ 𝐺 ) ↔ ∀ 𝑙 ∈ ∅ ∃! 𝑥 ∈ { 𝑁 } { { 𝑥 , 𝑁 } , { 𝑥 , 𝑙 } } ⊆ ( Edg ‘ 𝐺 ) ) ) |
| 13 |
2 12
|
mpbiri |
⊢ ( 𝑁 ∈ V → ∀ 𝑘 ∈ { 𝑁 } ∀ 𝑙 ∈ ( { 𝑁 } ∖ { 𝑘 } ) ∃! 𝑥 ∈ { 𝑁 } { { 𝑥 , 𝑘 } , { 𝑥 , 𝑙 } } ⊆ ( Edg ‘ 𝐺 ) ) |
| 14 |
|
snprc |
⊢ ( ¬ 𝑁 ∈ V ↔ { 𝑁 } = ∅ ) |
| 15 |
|
rzal |
⊢ ( { 𝑁 } = ∅ → ∀ 𝑘 ∈ { 𝑁 } ∀ 𝑙 ∈ ( { 𝑁 } ∖ { 𝑘 } ) ∃! 𝑥 ∈ { 𝑁 } { { 𝑥 , 𝑘 } , { 𝑥 , 𝑙 } } ⊆ ( Edg ‘ 𝐺 ) ) |
| 16 |
14 15
|
sylbi |
⊢ ( ¬ 𝑁 ∈ V → ∀ 𝑘 ∈ { 𝑁 } ∀ 𝑙 ∈ ( { 𝑁 } ∖ { 𝑘 } ) ∃! 𝑥 ∈ { 𝑁 } { { 𝑥 , 𝑘 } , { 𝑥 , 𝑙 } } ⊆ ( Edg ‘ 𝐺 ) ) |
| 17 |
13 16
|
pm2.61i |
⊢ ∀ 𝑘 ∈ { 𝑁 } ∀ 𝑙 ∈ ( { 𝑁 } ∖ { 𝑘 } ) ∃! 𝑥 ∈ { 𝑁 } { { 𝑥 , 𝑘 } , { 𝑥 , 𝑙 } } ⊆ ( Edg ‘ 𝐺 ) |
| 18 |
|
id |
⊢ ( ( Vtx ‘ 𝐺 ) = { 𝑁 } → ( Vtx ‘ 𝐺 ) = { 𝑁 } ) |
| 19 |
|
difeq1 |
⊢ ( ( Vtx ‘ 𝐺 ) = { 𝑁 } → ( ( Vtx ‘ 𝐺 ) ∖ { 𝑘 } ) = ( { 𝑁 } ∖ { 𝑘 } ) ) |
| 20 |
|
reueq1 |
⊢ ( ( Vtx ‘ 𝐺 ) = { 𝑁 } → ( ∃! 𝑥 ∈ ( Vtx ‘ 𝐺 ) { { 𝑥 , 𝑘 } , { 𝑥 , 𝑙 } } ⊆ ( Edg ‘ 𝐺 ) ↔ ∃! 𝑥 ∈ { 𝑁 } { { 𝑥 , 𝑘 } , { 𝑥 , 𝑙 } } ⊆ ( Edg ‘ 𝐺 ) ) ) |
| 21 |
19 20
|
raleqbidv |
⊢ ( ( Vtx ‘ 𝐺 ) = { 𝑁 } → ( ∀ 𝑙 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑘 } ) ∃! 𝑥 ∈ ( Vtx ‘ 𝐺 ) { { 𝑥 , 𝑘 } , { 𝑥 , 𝑙 } } ⊆ ( Edg ‘ 𝐺 ) ↔ ∀ 𝑙 ∈ ( { 𝑁 } ∖ { 𝑘 } ) ∃! 𝑥 ∈ { 𝑁 } { { 𝑥 , 𝑘 } , { 𝑥 , 𝑙 } } ⊆ ( Edg ‘ 𝐺 ) ) ) |
| 22 |
18 21
|
raleqbidv |
⊢ ( ( Vtx ‘ 𝐺 ) = { 𝑁 } → ( ∀ 𝑘 ∈ ( Vtx ‘ 𝐺 ) ∀ 𝑙 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑘 } ) ∃! 𝑥 ∈ ( Vtx ‘ 𝐺 ) { { 𝑥 , 𝑘 } , { 𝑥 , 𝑙 } } ⊆ ( Edg ‘ 𝐺 ) ↔ ∀ 𝑘 ∈ { 𝑁 } ∀ 𝑙 ∈ ( { 𝑁 } ∖ { 𝑘 } ) ∃! 𝑥 ∈ { 𝑁 } { { 𝑥 , 𝑘 } , { 𝑥 , 𝑙 } } ⊆ ( Edg ‘ 𝐺 ) ) ) |
| 23 |
22
|
adantl |
⊢ ( ( 𝐺 ∈ USGraph ∧ ( Vtx ‘ 𝐺 ) = { 𝑁 } ) → ( ∀ 𝑘 ∈ ( Vtx ‘ 𝐺 ) ∀ 𝑙 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑘 } ) ∃! 𝑥 ∈ ( Vtx ‘ 𝐺 ) { { 𝑥 , 𝑘 } , { 𝑥 , 𝑙 } } ⊆ ( Edg ‘ 𝐺 ) ↔ ∀ 𝑘 ∈ { 𝑁 } ∀ 𝑙 ∈ ( { 𝑁 } ∖ { 𝑘 } ) ∃! 𝑥 ∈ { 𝑁 } { { 𝑥 , 𝑘 } , { 𝑥 , 𝑙 } } ⊆ ( Edg ‘ 𝐺 ) ) ) |
| 24 |
17 23
|
mpbiri |
⊢ ( ( 𝐺 ∈ USGraph ∧ ( Vtx ‘ 𝐺 ) = { 𝑁 } ) → ∀ 𝑘 ∈ ( Vtx ‘ 𝐺 ) ∀ 𝑙 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑘 } ) ∃! 𝑥 ∈ ( Vtx ‘ 𝐺 ) { { 𝑥 , 𝑘 } , { 𝑥 , 𝑙 } } ⊆ ( Edg ‘ 𝐺 ) ) |
| 25 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
| 26 |
|
eqid |
⊢ ( Edg ‘ 𝐺 ) = ( Edg ‘ 𝐺 ) |
| 27 |
25 26
|
isfrgr |
⊢ ( 𝐺 ∈ FriendGraph ↔ ( 𝐺 ∈ USGraph ∧ ∀ 𝑘 ∈ ( Vtx ‘ 𝐺 ) ∀ 𝑙 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑘 } ) ∃! 𝑥 ∈ ( Vtx ‘ 𝐺 ) { { 𝑥 , 𝑘 } , { 𝑥 , 𝑙 } } ⊆ ( Edg ‘ 𝐺 ) ) ) |
| 28 |
1 24 27
|
sylanbrc |
⊢ ( ( 𝐺 ∈ USGraph ∧ ( Vtx ‘ 𝐺 ) = { 𝑁 } ) → 𝐺 ∈ FriendGraph ) |