Metamath Proof Explorer


Theorem friendship

Description: The friendship theorem: In every finite (nonempty) friendship graph there is a vertex which is adjacent to all other vertices. This is Metamath 100 proof #83. (Contributed by Alexander van der Vekens, 9-Oct-2018)

Ref Expression
Hypothesis friendship.v V=VtxG
Assertion friendship GFriendGraphVVFinvVwVvvwEdgG

Proof

Step Hyp Ref Expression
1 friendship.v V=VtxG
2 simpr1 3<VGFriendGraphVVFinGFriendGraph
3 simpr3 3<VGFriendGraphVVFinVFin
4 simpl 3<VGFriendGraphVVFin3<V
5 1 friendshipgt3 GFriendGraphVFin3<VvVwVvvwEdgG
6 2 3 4 5 syl3anc 3<VGFriendGraphVVFinvVwVvvwEdgG
7 6 ex 3<VGFriendGraphVVFinvVwVvvwEdgG
8 hashcl VFinV0
9 simplr V0VFin¬3<VVVFin
10 hashge1 VFinV1V
11 10 ad2ant2l V0VFin¬3<VV1V
12 nn0re V0V
13 3re 3
14 lenlt V3V3¬3<V
15 12 13 14 sylancl V0V3¬3<V
16 15 biimprd V0¬3<VV3
17 16 adantr V0VFin¬3<VV3
18 17 com12 ¬3<VV0VFinV3
19 18 adantr ¬3<VVV0VFinV3
20 19 impcom V0VFin¬3<VVV3
21 9 11 20 3jca V0VFin¬3<VVVFin1VV3
22 21 exp31 V0VFin¬3<VVVFin1VV3
23 8 22 mpcom VFin¬3<VVVFin1VV3
24 23 impcom ¬3<VVVFinVFin1VV3
25 hash1to3 VFin1VV3abcV=aV=abV=abc
26 vex aV
27 eqid EdgG=EdgG
28 1 27 1to3vfriendship aVV=aV=abV=abcGFriendGraphvVwVvvwEdgG
29 26 28 mpan V=aV=abV=abcGFriendGraphvVwVvvwEdgG
30 29 exlimiv cV=aV=abV=abcGFriendGraphvVwVvvwEdgG
31 30 exlimivv abcV=aV=abV=abcGFriendGraphvVwVvvwEdgG
32 24 25 31 3syl ¬3<VVVFinGFriendGraphvVwVvvwEdgG
33 32 exp31 ¬3<VVVFinGFriendGraphvVwVvvwEdgG
34 33 com14 GFriendGraphVVFin¬3<VvVwVvvwEdgG
35 34 3imp GFriendGraphVVFin¬3<VvVwVvvwEdgG
36 35 com12 ¬3<VGFriendGraphVVFinvVwVvvwEdgG
37 7 36 pm2.61i GFriendGraphVVFinvVwVvvwEdgG