Description: The friendship theorem: In every finite (nonempty) friendship graph there is a vertex which is adjacent to all other vertices. This is Metamath 100 proof #83. (Contributed by Alexander van der Vekens, 9-Oct-2018)
Ref | Expression | ||
---|---|---|---|
Hypothesis | friendship.v | |
|
Assertion | friendship | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | friendship.v | |
|
2 | simpr1 | |
|
3 | simpr3 | |
|
4 | simpl | |
|
5 | 1 | friendshipgt3 | |
6 | 2 3 4 5 | syl3anc | |
7 | 6 | ex | |
8 | hashcl | |
|
9 | simplr | |
|
10 | hashge1 | |
|
11 | 10 | ad2ant2l | |
12 | nn0re | |
|
13 | 3re | |
|
14 | lenlt | |
|
15 | 12 13 14 | sylancl | |
16 | 15 | biimprd | |
17 | 16 | adantr | |
18 | 17 | com12 | |
19 | 18 | adantr | |
20 | 19 | impcom | |
21 | 9 11 20 | 3jca | |
22 | 21 | exp31 | |
23 | 8 22 | mpcom | |
24 | 23 | impcom | |
25 | hash1to3 | |
|
26 | vex | |
|
27 | eqid | |
|
28 | 1 27 | 1to3vfriendship | |
29 | 26 28 | mpan | |
30 | 29 | exlimiv | |
31 | 30 | exlimivv | |
32 | 24 25 31 | 3syl | |
33 | 32 | exp31 | |
34 | 33 | com14 | |
35 | 34 | 3imp | |
36 | 35 | com12 | |
37 | 7 36 | pm2.61i | |