Metamath Proof Explorer


Theorem frirr

Description: A well-founded relation is irreflexive. Special case of Proposition 6.23 of TakeutiZaring p. 30. (Contributed by NM, 2-Jan-1994) (Revised by Mario Carneiro, 22-Jun-2015)

Ref Expression
Assertion frirr R Fr A B A ¬ B R B

Proof

Step Hyp Ref Expression
1 simpl R Fr A B A R Fr A
2 snssi B A B A
3 2 adantl R Fr A B A B A
4 snnzg B A B
5 4 adantl R Fr A B A B
6 snex B V
7 6 frc R Fr A B A B y B x B | x R y =
8 1 3 5 7 syl3anc R Fr A B A y B x B | x R y =
9 breq1 x = z x R y z R y
10 9 rabeq0w x B | x R y = z B ¬ z R y
11 breq2 y = B z R y z R B
12 11 notbid y = B ¬ z R y ¬ z R B
13 12 ralbidv y = B z B ¬ z R y z B ¬ z R B
14 10 13 bitrid y = B x B | x R y = z B ¬ z R B
15 14 rexsng B A y B x B | x R y = z B ¬ z R B
16 breq1 z = B z R B B R B
17 16 notbid z = B ¬ z R B ¬ B R B
18 17 ralsng B A z B ¬ z R B ¬ B R B
19 15 18 bitrd B A y B x B | x R y = ¬ B R B
20 19 adantl R Fr A B A y B x B | x R y = ¬ B R B
21 8 20 mpbid R Fr A B A ¬ B R B