Metamath Proof Explorer


Theorem frlmdim

Description: Dimension of a free left module. (Contributed by Thierry Arnoux, 20-May-2023)

Ref Expression
Hypothesis frlmdim.f F = R freeLMod I
Assertion frlmdim R DivRing I V dim F = I

Proof

Step Hyp Ref Expression
1 frlmdim.f F = R freeLMod I
2 1 frlmlvec R DivRing I V F LVec
3 drngring R DivRing R Ring
4 eqid R unitVec I = R unitVec I
5 eqid LBasis F = LBasis F
6 1 4 5 frlmlbs R Ring I V ran R unitVec I LBasis F
7 3 6 sylan R DivRing I V ran R unitVec I LBasis F
8 5 dimval F LVec ran R unitVec I LBasis F dim F = ran R unitVec I
9 2 7 8 syl2anc R DivRing I V dim F = ran R unitVec I
10 simpr R DivRing I V I V
11 drngnzr R DivRing R NzRing
12 eqid Base F = Base F
13 4 1 12 uvcf1 R NzRing I V R unitVec I : I 1-1 Base F
14 11 13 sylan R DivRing I V R unitVec I : I 1-1 Base F
15 hashf1rn I V R unitVec I : I 1-1 Base F R unitVec I = ran R unitVec I
16 10 14 15 syl2anc R DivRing I V R unitVec I = ran R unitVec I
17 mptexg I V k I if k = j 1 R 0 R V
18 17 ad2antlr R DivRing I V j I k I if k = j 1 R 0 R V
19 18 ralrimiva R DivRing I V j I k I if k = j 1 R 0 R V
20 eqid j I k I if k = j 1 R 0 R = j I k I if k = j 1 R 0 R
21 20 fnmpt j I k I if k = j 1 R 0 R V j I k I if k = j 1 R 0 R Fn I
22 19 21 syl R DivRing I V j I k I if k = j 1 R 0 R Fn I
23 eqid 1 R = 1 R
24 eqid 0 R = 0 R
25 4 23 24 uvcfval R DivRing I V R unitVec I = j I k I if k = j 1 R 0 R
26 25 fneq1d R DivRing I V R unitVec I Fn I j I k I if k = j 1 R 0 R Fn I
27 22 26 mpbird R DivRing I V R unitVec I Fn I
28 hashfn R unitVec I Fn I R unitVec I = I
29 27 28 syl R DivRing I V R unitVec I = I
30 9 16 29 3eqtr2d R DivRing I V dim F = I