Metamath Proof Explorer


Theorem frlmplusgval

Description: Addition in a free module. (Contributed by Stefan O'Rear, 1-Feb-2015) (Revised by Stefan O'Rear, 6-May-2015)

Ref Expression
Hypotheses frlmplusgval.y Y=RfreeLModI
frlmplusgval.b B=BaseY
frlmplusgval.r φRV
frlmplusgval.i φIW
frlmplusgval.f φFB
frlmplusgval.g φGB
frlmplusgval.a +˙=+R
frlmplusgval.p ˙=+Y
Assertion frlmplusgval φF˙G=F+˙fG

Proof

Step Hyp Ref Expression
1 frlmplusgval.y Y=RfreeLModI
2 frlmplusgval.b B=BaseY
3 frlmplusgval.r φRV
4 frlmplusgval.i φIW
5 frlmplusgval.f φFB
6 frlmplusgval.g φGB
7 frlmplusgval.a +˙=+R
8 frlmplusgval.p ˙=+Y
9 eqid BaseY=BaseY
10 1 9 frlmpws RVIWY=ringLModR𝑠I𝑠BaseY
11 3 4 10 syl2anc φY=ringLModR𝑠I𝑠BaseY
12 11 fveq2d φ+Y=+ringLModR𝑠I𝑠BaseY
13 fvex BaseYV
14 eqid ringLModR𝑠I𝑠BaseY=ringLModR𝑠I𝑠BaseY
15 eqid +ringLModR𝑠I=+ringLModR𝑠I
16 14 15 ressplusg BaseYV+ringLModR𝑠I=+ringLModR𝑠I𝑠BaseY
17 13 16 ax-mp +ringLModR𝑠I=+ringLModR𝑠I𝑠BaseY
18 12 8 17 3eqtr4g φ˙=+ringLModR𝑠I
19 18 oveqd φF˙G=F+ringLModR𝑠IG
20 eqid ringLModR𝑠I=ringLModR𝑠I
21 eqid BaseringLModR𝑠I=BaseringLModR𝑠I
22 fvexd φringLModRV
23 1 2 frlmpws RVIWY=ringLModR𝑠I𝑠B
24 3 4 23 syl2anc φY=ringLModR𝑠I𝑠B
25 24 fveq2d φBaseY=BaseringLModR𝑠I𝑠B
26 2 25 eqtrid φB=BaseringLModR𝑠I𝑠B
27 eqid ringLModR𝑠I𝑠B=ringLModR𝑠I𝑠B
28 27 21 ressbasss BaseringLModR𝑠I𝑠BBaseringLModR𝑠I
29 26 28 eqsstrdi φBBaseringLModR𝑠I
30 29 5 sseldd φFBaseringLModR𝑠I
31 29 6 sseldd φGBaseringLModR𝑠I
32 rlmplusg +R=+ringLModR
33 7 32 eqtri +˙=+ringLModR
34 20 21 22 4 30 31 33 15 pwsplusgval φF+ringLModR𝑠IG=F+˙fG
35 19 34 eqtrd φF˙G=F+˙fG