Metamath Proof Explorer


Theorem frlmplusgvalb

Description: Addition in a free module at the coordinates. (Contributed by AV, 16-Jan-2023)

Ref Expression
Hypotheses frlmplusgvalb.f F=RfreeLModI
frlmplusgvalb.b B=BaseF
frlmplusgvalb.i φIW
frlmplusgvalb.x φXB
frlmplusgvalb.z φZB
frlmplusgvalb.r φRRing
frlmplusgvalb.y φYB
frlmplusgvalb.a +˙=+R
frlmplusgvalb.p ˙=+F
Assertion frlmplusgvalb φZ=X˙YiIZi=Xi+˙Yi

Proof

Step Hyp Ref Expression
1 frlmplusgvalb.f F=RfreeLModI
2 frlmplusgvalb.b B=BaseF
3 frlmplusgvalb.i φIW
4 frlmplusgvalb.x φXB
5 frlmplusgvalb.z φZB
6 frlmplusgvalb.r φRRing
7 frlmplusgvalb.y φYB
8 frlmplusgvalb.a +˙=+R
9 frlmplusgvalb.p ˙=+F
10 eqid BaseR=BaseR
11 1 10 2 frlmbasmap IWZBZBaseRI
12 3 5 11 syl2anc φZBaseRI
13 fvexd φBaseRV
14 13 3 elmapd φZBaseRIZ:IBaseR
15 12 14 mpbid φZ:IBaseR
16 15 ffnd φZFnI
17 1 frlmlmod RRingIWFLMod
18 6 3 17 syl2anc φFLMod
19 lmodgrp FLModFGrp
20 18 19 syl φFGrp
21 2 9 grpcl FGrpXBYBX˙YB
22 20 4 7 21 syl3anc φX˙YB
23 1 10 2 frlmbasmap IWX˙YBX˙YBaseRI
24 3 22 23 syl2anc φX˙YBaseRI
25 13 3 elmapd φX˙YBaseRIX˙Y:IBaseR
26 24 25 mpbid φX˙Y:IBaseR
27 26 ffnd φX˙YFnI
28 eqfnfv ZFnIX˙YFnIZ=X˙YiIZi=X˙Yi
29 16 27 28 syl2anc φZ=X˙YiIZi=X˙Yi
30 6 adantr φiIRRing
31 3 adantr φiIIW
32 4 adantr φiIXB
33 7 adantr φiIYB
34 simpr φiIiI
35 1 2 30 31 32 33 34 8 9 frlmvplusgvalc φiIX˙Yi=Xi+˙Yi
36 35 eqeq2d φiIZi=X˙YiZi=Xi+˙Yi
37 36 ralbidva φiIZi=X˙YiiIZi=Xi+˙Yi
38 29 37 bitrd φZ=X˙YiIZi=Xi+˙Yi