Metamath Proof Explorer


Theorem frlmsslss2

Description: A subset of a free module obtained by restricting the support set is a submodule. J is the set of permitted unit vectors. (Contributed by Stefan O'Rear, 5-Feb-2015) (Revised by AV, 23-Jun-2019)

Ref Expression
Hypotheses frlmsslss.y Y=RfreeLModI
frlmsslss.u U=LSubSpY
frlmsslss.b B=BaseY
frlmsslss.z 0˙=0R
frlmsslss2.c C=xB|xsupp0˙J
Assertion frlmsslss2 RRingIVJICU

Proof

Step Hyp Ref Expression
1 frlmsslss.y Y=RfreeLModI
2 frlmsslss.u U=LSubSpY
3 frlmsslss.b B=BaseY
4 frlmsslss.z 0˙=0R
5 frlmsslss2.c C=xB|xsupp0˙J
6 eqid BaseR=BaseR
7 1 6 3 frlmbasf IVxBx:IBaseR
8 7 3ad2antl2 RRingIVJIxBx:IBaseR
9 8 ffnd RRingIVJIxBxFnI
10 simpl3 RRingIVJIxBJI
11 undif JIJIJ=I
12 10 11 sylib RRingIVJIxBJIJ=I
13 12 fneq2d RRingIVJIxBxFnJIJxFnI
14 9 13 mpbird RRingIVJIxBxFnJIJ
15 simpr RRingIVJIxBxB
16 4 fvexi 0˙V
17 16 a1i RRingIVJIxB0˙V
18 disjdif JIJ=
19 18 a1i RRingIVJIxBJIJ=
20 fnsuppres xFnJIJxB0˙VJIJ=xsupp0˙JxIJ=IJ×0˙
21 14 15 17 19 20 syl121anc RRingIVJIxBxsupp0˙JxIJ=IJ×0˙
22 21 rabbidva RRingIVJIxB|xsupp0˙J=xB|xIJ=IJ×0˙
23 5 22 eqtrid RRingIVJIC=xB|xIJ=IJ×0˙
24 difssd RRingIVJIIJI
25 eqid xB|xIJ=IJ×0˙=xB|xIJ=IJ×0˙
26 1 2 3 4 25 frlmsslss RRingIVIJIxB|xIJ=IJ×0˙U
27 24 26 syld3an3 RRingIVJIxB|xIJ=IJ×0˙U
28 23 27 eqeltrd RRingIVJICU