Description: A subset of a free module obtained by restricting the support set is a submodule. J is the set of permitted unit vectors. (Contributed by Stefan O'Rear, 5-Feb-2015) (Revised by AV, 23-Jun-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | frlmsslss.y | |
|
frlmsslss.u | |
||
frlmsslss.b | |
||
frlmsslss.z | |
||
frlmsslss2.c | |
||
Assertion | frlmsslss2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frlmsslss.y | |
|
2 | frlmsslss.u | |
|
3 | frlmsslss.b | |
|
4 | frlmsslss.z | |
|
5 | frlmsslss2.c | |
|
6 | eqid | |
|
7 | 1 6 3 | frlmbasf | |
8 | 7 | 3ad2antl2 | |
9 | 8 | ffnd | |
10 | simpl3 | |
|
11 | undif | |
|
12 | 10 11 | sylib | |
13 | 12 | fneq2d | |
14 | 9 13 | mpbird | |
15 | simpr | |
|
16 | 4 | fvexi | |
17 | 16 | a1i | |
18 | disjdif | |
|
19 | 18 | a1i | |
20 | fnsuppres | |
|
21 | 14 15 17 19 20 | syl121anc | |
22 | 21 | rabbidva | |
23 | 5 22 | eqtrid | |
24 | difssd | |
|
25 | eqid | |
|
26 | 1 2 3 4 25 | frlmsslss | |
27 | 24 26 | syld3an3 | |
28 | 23 27 | eqeltrd | |