Description: The value of the finite recursive definition generator at a successor (special case where the characteristic function is a mapping abstraction and where the mapping class D is a proper class). This is a technical lemma that can be used together with frsucmpt to help eliminate redundant sethood antecedents. (Contributed by Scott Fenton, 19-Feb-2011) (Revised by Mario Carneiro, 11-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | frsucmpt.1 | |
|
frsucmpt.2 | |
||
frsucmpt.3 | |
||
frsucmpt.4 | |
||
frsucmpt.5 | |
||
Assertion | frsucmptn | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frsucmpt.1 | |
|
2 | frsucmpt.2 | |
|
3 | frsucmpt.3 | |
|
4 | frsucmpt.4 | |
|
5 | frsucmpt.5 | |
|
6 | 4 | fveq1i | |
7 | frfnom | |
|
8 | fndm | |
|
9 | 7 8 | ax-mp | |
10 | 9 | eleq2i | |
11 | peano2b | |
|
12 | frsuc | |
|
13 | 4 | fveq1i | |
14 | 13 | fveq2i | |
15 | 12 14 | eqtr4di | |
16 | nfmpt1 | |
|
17 | 16 1 | nfrdg | |
18 | nfcv | |
|
19 | 17 18 | nfres | |
20 | 4 19 | nfcxfr | |
21 | 20 2 | nffv | |
22 | eqid | |
|
23 | 21 3 5 22 | fvmptnf | |
24 | 15 23 | sylan9eqr | |
25 | 24 | ex | |
26 | 11 25 | biimtrrid | |
27 | 10 26 | biimtrid | |
28 | ndmfv | |
|
29 | 27 28 | pm2.61d1 | |
30 | 6 29 | eqtrid | |