Metamath Proof Explorer


Theorem frsucmptn

Description: The value of the finite recursive definition generator at a successor (special case where the characteristic function is a mapping abstraction and where the mapping class D is a proper class). This is a technical lemma that can be used together with frsucmpt to help eliminate redundant sethood antecedents. (Contributed by Scott Fenton, 19-Feb-2011) (Revised by Mario Carneiro, 11-Sep-2015)

Ref Expression
Hypotheses frsucmpt.1 _xA
frsucmpt.2 _xB
frsucmpt.3 _xD
frsucmpt.4 F=recxVCAω
frsucmpt.5 x=FBC=D
Assertion frsucmptn ¬DVFsucB=

Proof

Step Hyp Ref Expression
1 frsucmpt.1 _xA
2 frsucmpt.2 _xB
3 frsucmpt.3 _xD
4 frsucmpt.4 F=recxVCAω
5 frsucmpt.5 x=FBC=D
6 4 fveq1i FsucB=recxVCAωsucB
7 frfnom recxVCAωFnω
8 fndm recxVCAωFnωdomrecxVCAω=ω
9 7 8 ax-mp domrecxVCAω=ω
10 9 eleq2i sucBdomrecxVCAωsucBω
11 peano2b BωsucBω
12 frsuc BωrecxVCAωsucB=xVCrecxVCAωB
13 4 fveq1i FB=recxVCAωB
14 13 fveq2i xVCFB=xVCrecxVCAωB
15 12 14 eqtr4di BωrecxVCAωsucB=xVCFB
16 nfmpt1 _xxVC
17 16 1 nfrdg _xrecxVCA
18 nfcv _xω
19 17 18 nfres _xrecxVCAω
20 4 19 nfcxfr _xF
21 20 2 nffv _xFB
22 eqid xVC=xVC
23 21 3 5 22 fvmptnf ¬DVxVCFB=
24 15 23 sylan9eqr ¬DVBωrecxVCAωsucB=
25 24 ex ¬DVBωrecxVCAωsucB=
26 11 25 biimtrrid ¬DVsucBωrecxVCAωsucB=
27 10 26 biimtrid ¬DVsucBdomrecxVCAωrecxVCAωsucB=
28 ndmfv ¬sucBdomrecxVCAωrecxVCAωsucB=
29 27 28 pm2.61d1 ¬DVrecxVCAωsucB=
30 6 29 eqtrid ¬DVFsucB=