Metamath Proof Explorer


Theorem fsetprcnex

Description: The class of all functions from a nonempty set A into a proper class B is not a set. If one of the preconditions is not fufilled, then { f | f : A --> B } is a set, see fsetdmprc0 for A e/V , fset0 for A = (/) , and fsetex for B e. V , see also fsetexb . (Contributed by AV, 14-Sep-2024) (Proof shortened by BJ, 15-Sep-2024)

Ref Expression
Assertion fsetprcnex AVABVf|f:ABV

Proof

Step Hyp Ref Expression
1 n0 AaaA
2 feq1 f=mf:ABm:AB
3 2 cbvabv f|f:AB=m|m:AB
4 fveq1 g=nga=na
5 4 cbvmptv gf|f:ABga=nf|f:ABna
6 3 5 fsetfocdm AVaAgf|f:ABga:f|f:ABontoB
7 focdmex f|f:ABVgf|f:ABga:f|f:ABontoBBV
8 6 7 syl5com AVaAf|f:ABVBV
9 8 nelcon3d AVaABVf|f:ABV
10 9 expcom aAAVBVf|f:ABV
11 10 exlimiv aaAAVBVf|f:ABV
12 1 11 sylbi AAVBVf|f:ABV
13 12 impcom AVABVf|f:ABV
14 13 imp AVABVf|f:ABV