| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fsumadd.1 |  | 
						
							| 2 |  | fsumadd.2 |  | 
						
							| 3 |  | fsumadd.3 |  | 
						
							| 4 |  | 00id |  | 
						
							| 5 |  | sum0 |  | 
						
							| 6 |  | sum0 |  | 
						
							| 7 | 5 6 | oveq12i |  | 
						
							| 8 |  | sum0 |  | 
						
							| 9 | 4 7 8 | 3eqtr4ri |  | 
						
							| 10 |  | sumeq1 |  | 
						
							| 11 |  | sumeq1 |  | 
						
							| 12 |  | sumeq1 |  | 
						
							| 13 | 11 12 | oveq12d |  | 
						
							| 14 | 9 10 13 | 3eqtr4a |  | 
						
							| 15 | 14 | a1i |  | 
						
							| 16 |  | simprl |  | 
						
							| 17 |  | nnuz |  | 
						
							| 18 | 16 17 | eleqtrdi |  | 
						
							| 19 | 2 | adantlr |  | 
						
							| 20 | 19 | fmpttd |  | 
						
							| 21 |  | simprr |  | 
						
							| 22 |  | f1of |  | 
						
							| 23 | 21 22 | syl |  | 
						
							| 24 |  | fco |  | 
						
							| 25 | 20 23 24 | syl2anc |  | 
						
							| 26 | 25 | ffvelcdmda |  | 
						
							| 27 | 3 | adantlr |  | 
						
							| 28 | 27 | fmpttd |  | 
						
							| 29 |  | fco |  | 
						
							| 30 | 28 23 29 | syl2anc |  | 
						
							| 31 | 30 | ffvelcdmda |  | 
						
							| 32 | 23 | ffvelcdmda |  | 
						
							| 33 |  | ovex |  | 
						
							| 34 |  | eqid |  | 
						
							| 35 | 34 | fvmpt2 |  | 
						
							| 36 | 33 35 | mpan2 |  | 
						
							| 37 | 36 | adantl |  | 
						
							| 38 |  | simpr |  | 
						
							| 39 |  | eqid |  | 
						
							| 40 | 39 | fvmpt2 |  | 
						
							| 41 | 38 2 40 | syl2anc |  | 
						
							| 42 |  | eqid |  | 
						
							| 43 | 42 | fvmpt2 |  | 
						
							| 44 | 38 3 43 | syl2anc |  | 
						
							| 45 | 41 44 | oveq12d |  | 
						
							| 46 | 37 45 | eqtr4d |  | 
						
							| 47 | 46 | ralrimiva |  | 
						
							| 48 | 47 | ad2antrr |  | 
						
							| 49 |  | nffvmpt1 |  | 
						
							| 50 |  | nffvmpt1 |  | 
						
							| 51 |  | nfcv |  | 
						
							| 52 |  | nffvmpt1 |  | 
						
							| 53 | 50 51 52 | nfov |  | 
						
							| 54 | 49 53 | nfeq |  | 
						
							| 55 |  | fveq2 |  | 
						
							| 56 |  | fveq2 |  | 
						
							| 57 |  | fveq2 |  | 
						
							| 58 | 56 57 | oveq12d |  | 
						
							| 59 | 55 58 | eqeq12d |  | 
						
							| 60 | 54 59 | rspc |  | 
						
							| 61 | 32 48 60 | sylc |  | 
						
							| 62 |  | fvco3 |  | 
						
							| 63 | 23 62 | sylan |  | 
						
							| 64 |  | fvco3 |  | 
						
							| 65 | 23 64 | sylan |  | 
						
							| 66 |  | fvco3 |  | 
						
							| 67 | 23 66 | sylan |  | 
						
							| 68 | 65 67 | oveq12d |  | 
						
							| 69 | 61 63 68 | 3eqtr4d |  | 
						
							| 70 | 18 26 31 69 | seradd |  | 
						
							| 71 |  | fveq2 |  | 
						
							| 72 | 19 27 | addcld |  | 
						
							| 73 | 72 | fmpttd |  | 
						
							| 74 | 73 | ffvelcdmda |  | 
						
							| 75 | 71 16 21 74 63 | fsum |  | 
						
							| 76 |  | fveq2 |  | 
						
							| 77 | 20 | ffvelcdmda |  | 
						
							| 78 | 76 16 21 77 65 | fsum |  | 
						
							| 79 |  | fveq2 |  | 
						
							| 80 | 28 | ffvelcdmda |  | 
						
							| 81 | 79 16 21 80 67 | fsum |  | 
						
							| 82 | 78 81 | oveq12d |  | 
						
							| 83 | 70 75 82 | 3eqtr4d |  | 
						
							| 84 |  | sumfc |  | 
						
							| 85 |  | sumfc |  | 
						
							| 86 |  | sumfc |  | 
						
							| 87 | 85 86 | oveq12i |  | 
						
							| 88 | 83 84 87 | 3eqtr3g |  | 
						
							| 89 | 88 | expr |  | 
						
							| 90 | 89 | exlimdv |  | 
						
							| 91 | 90 | expimpd |  | 
						
							| 92 |  | fz1f1o |  | 
						
							| 93 | 1 92 | syl |  | 
						
							| 94 | 15 91 93 | mpjaod |  |