Metamath Proof Explorer


Theorem fsumcncf

Description: The finite sum of continuous complex function is continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fsumcncf.x φX
fsumcncf.a φAFin
fsumcncf.cncf φkAxXB:Xcn
Assertion fsumcncf φxXkAB:Xcn

Proof

Step Hyp Ref Expression
1 fsumcncf.x φX
2 fsumcncf.a φAFin
3 fsumcncf.cncf φkAxXB:Xcn
4 eqid TopOpenfld=TopOpenfld
5 4 cnfldtopon TopOpenfldTopOn
6 5 a1i φTopOpenfldTopOn
7 resttopon TopOpenfldTopOnXTopOpenfld𝑡XTopOnX
8 6 1 7 syl2anc φTopOpenfld𝑡XTopOnX
9 ssidd φ
10 eqid TopOpenfld𝑡X=TopOpenfld𝑡X
11 4 cnfldtop TopOpenfldTop
12 unicntop =TopOpenfld
13 12 restid TopOpenfldTopTopOpenfld𝑡=TopOpenfld
14 11 13 ax-mp TopOpenfld𝑡=TopOpenfld
15 14 eqcomi TopOpenfld=TopOpenfld𝑡
16 4 10 15 cncfcn XXcn=TopOpenfld𝑡XCnTopOpenfld
17 1 9 16 syl2anc φXcn=TopOpenfld𝑡XCnTopOpenfld
18 17 adantr φkAXcn=TopOpenfld𝑡XCnTopOpenfld
19 3 18 eleqtrd φkAxXBTopOpenfld𝑡XCnTopOpenfld
20 4 8 2 19 fsumcnf φxXkABTopOpenfld𝑡XCnTopOpenfld
21 20 17 eleqtrrd φxXkAB:Xcn