Description: The finite sum of continuous complex function is continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fsumcncf.x | |
|
fsumcncf.a | |
||
fsumcncf.cncf | |
||
Assertion | fsumcncf | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fsumcncf.x | |
|
2 | fsumcncf.a | |
|
3 | fsumcncf.cncf | |
|
4 | eqid | |
|
5 | 4 | cnfldtopon | |
6 | 5 | a1i | |
7 | resttopon | |
|
8 | 6 1 7 | syl2anc | |
9 | ssidd | |
|
10 | eqid | |
|
11 | 4 | cnfldtop | |
12 | unicntop | |
|
13 | 12 | restid | |
14 | 11 13 | ax-mp | |
15 | 14 | eqcomi | |
16 | 4 10 15 | cncfcn | |
17 | 1 9 16 | syl2anc | |
18 | 17 | adantr | |
19 | 3 18 | eleqtrd | |
20 | 4 8 2 19 | fsumcnf | |
21 | 20 17 | eleqtrrd | |