| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cncfperiod.a |
|
| 2 |
|
cncfperiod.t |
|
| 3 |
|
cncfperiod.b |
|
| 4 |
|
cncfperiod.f |
|
| 5 |
|
cncfperiod.cssdmf |
|
| 6 |
|
cncfperiod.fper |
|
| 7 |
|
cncfperiod.fcn |
|
| 8 |
4 5
|
fssresd |
|
| 9 |
|
fvoveq1 |
|
| 10 |
9
|
breq1d |
|
| 11 |
10
|
imbrov2fvoveq |
|
| 12 |
11
|
rexralbidv |
|
| 13 |
12
|
ralbidv |
|
| 14 |
7
|
adantr |
|
| 15 |
1
|
adantr |
|
| 16 |
|
ssidd |
|
| 17 |
|
elcncf |
|
| 18 |
15 16 17
|
syl2anc |
|
| 19 |
14 18
|
mpbid |
|
| 20 |
19
|
simprd |
|
| 21 |
|
simpr |
|
| 22 |
21 3
|
eleqtrdi |
|
| 23 |
|
rabid |
|
| 24 |
22 23
|
sylib |
|
| 25 |
24
|
simprd |
|
| 26 |
|
oveq1 |
|
| 27 |
26
|
3ad2ant3 |
|
| 28 |
1
|
sselda |
|
| 29 |
2
|
recnd |
|
| 30 |
29
|
adantr |
|
| 31 |
28 30
|
pncand |
|
| 32 |
31
|
adantlr |
|
| 33 |
32
|
3adant3 |
|
| 34 |
27 33
|
eqtrd |
|
| 35 |
|
simp2 |
|
| 36 |
34 35
|
eqeltrd |
|
| 37 |
36
|
rexlimdv3a |
|
| 38 |
25 37
|
mpd |
|
| 39 |
13 20 38
|
rspcdva |
|
| 40 |
39
|
adantrr |
|
| 41 |
|
simprr |
|
| 42 |
|
rspa |
|
| 43 |
40 41 42
|
syl2anc |
|
| 44 |
|
simpl1l |
|
| 45 |
44
|
adantr |
|
| 46 |
|
simp1rl |
|
| 47 |
46
|
adantr |
|
| 48 |
47
|
adantr |
|
| 49 |
|
simplr |
|
| 50 |
|
fvres |
|
| 51 |
50
|
adantl |
|
| 52 |
3
|
ssrab3 |
|
| 53 |
52
|
sseli |
|
| 54 |
53
|
adantl |
|
| 55 |
29
|
adantr |
|
| 56 |
54 55
|
npcand |
|
| 57 |
56
|
eqcomd |
|
| 58 |
57
|
fveq2d |
|
| 59 |
|
simpl |
|
| 60 |
59 38
|
jca |
|
| 61 |
|
eleq1 |
|
| 62 |
61
|
anbi2d |
|
| 63 |
|
fvoveq1 |
|
| 64 |
|
fveq2 |
|
| 65 |
63 64
|
eqeq12d |
|
| 66 |
62 65
|
imbi12d |
|
| 67 |
|
eleq1 |
|
| 68 |
67
|
anbi2d |
|
| 69 |
|
fvoveq1 |
|
| 70 |
|
fveq2 |
|
| 71 |
69 70
|
eqeq12d |
|
| 72 |
68 71
|
imbi12d |
|
| 73 |
72 6
|
chvarvv |
|
| 74 |
66 73
|
vtoclg |
|
| 75 |
38 60 74
|
sylc |
|
| 76 |
38
|
fvresd |
|
| 77 |
75 76
|
eqtr4d |
|
| 78 |
51 58 77
|
3eqtrd |
|
| 79 |
78
|
3adant3 |
|
| 80 |
|
eleq1 |
|
| 81 |
80
|
anbi2d |
|
| 82 |
|
fveq2 |
|
| 83 |
|
fvoveq1 |
|
| 84 |
82 83
|
eqeq12d |
|
| 85 |
81 84
|
imbi12d |
|
| 86 |
85 78
|
chvarvv |
|
| 87 |
86
|
3adant2 |
|
| 88 |
79 87
|
oveq12d |
|
| 89 |
88
|
fveq2d |
|
| 90 |
45 48 49 89
|
syl3anc |
|
| 91 |
|
simpr |
|
| 92 |
24
|
simpld |
|
| 93 |
92
|
adantr |
|
| 94 |
52
|
sseli |
|
| 95 |
94
|
adantl |
|
| 96 |
55
|
adantr |
|
| 97 |
93 95 96
|
nnncan2d |
|
| 98 |
97
|
fveq2d |
|
| 99 |
98
|
adantr |
|
| 100 |
|
simpr |
|
| 101 |
99 100
|
eqbrtrd |
|
| 102 |
45 48 49 91 101
|
syl1111anc |
|
| 103 |
|
oveq2 |
|
| 104 |
103
|
fveq2d |
|
| 105 |
104
|
breq1d |
|
| 106 |
|
fveq2 |
|
| 107 |
106
|
oveq2d |
|
| 108 |
107
|
fveq2d |
|
| 109 |
108
|
breq1d |
|
| 110 |
105 109
|
imbi12d |
|
| 111 |
|
simpll3 |
|
| 112 |
|
oveq1 |
|
| 113 |
112
|
eleq1d |
|
| 114 |
81 113
|
imbi12d |
|
| 115 |
114 38
|
chvarvv |
|
| 116 |
45 49 115
|
syl2anc |
|
| 117 |
110 111 116
|
rspcdva |
|
| 118 |
102 117
|
mpd |
|
| 119 |
90 118
|
eqbrtrd |
|
| 120 |
119
|
ex |
|
| 121 |
120
|
ralrimiva |
|
| 122 |
121
|
3exp |
|
| 123 |
122
|
reximdvai |
|
| 124 |
43 123
|
mpd |
|
| 125 |
124
|
ralrimivva |
|
| 126 |
52
|
a1i |
|
| 127 |
|
ssidd |
|
| 128 |
|
elcncf |
|
| 129 |
126 127 128
|
syl2anc |
|
| 130 |
8 125 129
|
mpbir2and |
|