Description: Re-index a finite sum using a bijection. Same as fsumf1o , but using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 17-Aug-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fsumf1of.1 | |
|
fsumf1of.2 | |
||
fsumf1of.3 | |
||
fsumf1of.4 | |
||
fsumf1of.5 | |
||
fsumf1of.6 | |
||
fsumf1of.7 | |
||
Assertion | fsumf1of | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fsumf1of.1 | |
|
2 | fsumf1of.2 | |
|
3 | fsumf1of.3 | |
|
4 | fsumf1of.4 | |
|
5 | fsumf1of.5 | |
|
6 | fsumf1of.6 | |
|
7 | fsumf1of.7 | |
|
8 | csbeq1a | |
|
9 | nfcv | |
|
10 | nfcv | |
|
11 | nfcv | |
|
12 | nfcsb1v | |
|
13 | 8 9 10 11 12 | cbvsum | |
14 | 13 | a1i | |
15 | nfv | |
|
16 | nfcv | |
|
17 | 12 16 | nfeq | |
18 | 15 17 | nfim | |
19 | eqeq1 | |
|
20 | 8 | eqeq1d | |
21 | 19 20 | imbi12d | |
22 | nfcv | |
|
23 | nfcsb1v | |
|
24 | 22 23 | nfeq | |
25 | nfcv | |
|
26 | nfcsb1v | |
|
27 | 25 26 | nfeq | |
28 | 24 27 | nfim | |
29 | csbeq1a | |
|
30 | 29 | eqeq2d | |
31 | csbeq1a | |
|
32 | 31 | eqeq2d | |
33 | 30 32 | imbi12d | |
34 | 28 33 3 | chvarfv | |
35 | 18 21 34 | chvarfv | |
36 | nfv | |
|
37 | 2 36 | nfan | |
38 | nfcv | |
|
39 | 38 23 | nfeq | |
40 | 37 39 | nfim | |
41 | eleq1w | |
|
42 | 41 | anbi2d | |
43 | fveq2 | |
|
44 | 43 29 | eqeq12d | |
45 | 42 44 | imbi12d | |
46 | 40 45 6 | chvarfv | |
47 | nfv | |
|
48 | 1 47 | nfan | |
49 | 12 | nfel1 | |
50 | 48 49 | nfim | |
51 | eleq1w | |
|
52 | 51 | anbi2d | |
53 | 8 | eleq1d | |
54 | 52 53 | imbi12d | |
55 | 50 54 7 | chvarfv | |
56 | 35 4 5 46 55 | fsumf1o | |
57 | nfcv | |
|
58 | nfcv | |
|
59 | nfcv | |
|
60 | 31 57 58 59 26 | cbvsum | |
61 | 60 | eqcomi | |
62 | 61 | a1i | |
63 | 14 56 62 | 3eqtrd | |