Metamath Proof Explorer


Theorem fsumf1of

Description: Re-index a finite sum using a bijection. Same as fsumf1o , but using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses fsumf1of.1 kφ
fsumf1of.2 nφ
fsumf1of.3 k=GB=D
fsumf1of.4 φCFin
fsumf1of.5 φF:C1-1 ontoA
fsumf1of.6 φnCFn=G
fsumf1of.7 φkAB
Assertion fsumf1of φkAB=nCD

Proof

Step Hyp Ref Expression
1 fsumf1of.1 kφ
2 fsumf1of.2 nφ
3 fsumf1of.3 k=GB=D
4 fsumf1of.4 φCFin
5 fsumf1of.5 φF:C1-1 ontoA
6 fsumf1of.6 φnCFn=G
7 fsumf1of.7 φkAB
8 csbeq1a k=iB=i/kB
9 nfcv _iA
10 nfcv _kA
11 nfcv _iB
12 nfcsb1v _ki/kB
13 8 9 10 11 12 cbvsum kAB=iAi/kB
14 13 a1i φkAB=iAi/kB
15 nfv ki=j/nG
16 nfcv _kj/nD
17 12 16 nfeq ki/kB=j/nD
18 15 17 nfim ki=j/nGi/kB=j/nD
19 eqeq1 k=ik=j/nGi=j/nG
20 8 eqeq1d k=iB=j/nDi/kB=j/nD
21 19 20 imbi12d k=ik=j/nGB=j/nDi=j/nGi/kB=j/nD
22 nfcv _nk
23 nfcsb1v _nj/nG
24 22 23 nfeq nk=j/nG
25 nfcv _nB
26 nfcsb1v _nj/nD
27 25 26 nfeq nB=j/nD
28 24 27 nfim nk=j/nGB=j/nD
29 csbeq1a n=jG=j/nG
30 29 eqeq2d n=jk=Gk=j/nG
31 csbeq1a n=jD=j/nD
32 31 eqeq2d n=jB=DB=j/nD
33 30 32 imbi12d n=jk=GB=Dk=j/nGB=j/nD
34 28 33 3 chvarfv k=j/nGB=j/nD
35 18 21 34 chvarfv i=j/nGi/kB=j/nD
36 nfv njC
37 2 36 nfan nφjC
38 nfcv _nFj
39 38 23 nfeq nFj=j/nG
40 37 39 nfim nφjCFj=j/nG
41 eleq1w n=jnCjC
42 41 anbi2d n=jφnCφjC
43 fveq2 n=jFn=Fj
44 43 29 eqeq12d n=jFn=GFj=j/nG
45 42 44 imbi12d n=jφnCFn=GφjCFj=j/nG
46 40 45 6 chvarfv φjCFj=j/nG
47 nfv kiA
48 1 47 nfan kφiA
49 12 nfel1 ki/kB
50 48 49 nfim kφiAi/kB
51 eleq1w k=ikAiA
52 51 anbi2d k=iφkAφiA
53 8 eleq1d k=iBi/kB
54 52 53 imbi12d k=iφkABφiAi/kB
55 50 54 7 chvarfv φiAi/kB
56 35 4 5 46 55 fsumf1o φiAi/kB=jCj/nD
57 nfcv _jC
58 nfcv _nC
59 nfcv _jD
60 31 57 58 59 26 cbvsum nCD=jCj/nD
61 60 eqcomi jCj/nD=nCD
62 61 a1i φjCj/nD=nCD
63 14 56 62 3eqtrd φkAB=nCD