| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fsumiunss.b |
|
| 2 |
|
fsumiunss.dj |
|
| 3 |
|
fsumiunss.c |
|
| 4 |
|
fsumiunss.fi |
|
| 5 |
|
nfcv |
|
| 6 |
|
nfcsb1v |
|
| 7 |
|
nfcv |
|
| 8 |
6 7
|
nfin |
|
| 9 |
|
csbeq1a |
|
| 10 |
9
|
ineq1d |
|
| 11 |
5 8 10
|
cbviun |
|
| 12 |
11
|
sumeq1i |
|
| 13 |
12
|
a1i |
|
| 14 |
|
eliun |
|
| 15 |
14
|
biimpi |
|
| 16 |
|
df-rex |
|
| 17 |
15 16
|
sylib |
|
| 18 |
|
nfcv |
|
| 19 |
|
nfiu1 |
|
| 20 |
18 19
|
nfel |
|
| 21 |
|
simpl |
|
| 22 |
|
ne0i |
|
| 23 |
22
|
adantl |
|
| 24 |
21 23
|
jca |
|
| 25 |
|
nfcv |
|
| 26 |
|
nfv |
|
| 27 |
26
|
nfci |
|
| 28 |
|
nfcv |
|
| 29 |
8 28
|
nfne |
|
| 30 |
10
|
neeq1d |
|
| 31 |
25 27 29 30
|
elrabf |
|
| 32 |
24 31
|
sylibr |
|
| 33 |
|
simpr |
|
| 34 |
32 33
|
jca |
|
| 35 |
34
|
a1i |
|
| 36 |
20 35
|
eximd |
|
| 37 |
17 36
|
mpd |
|
| 38 |
|
df-rex |
|
| 39 |
37 38
|
sylibr |
|
| 40 |
|
eliun |
|
| 41 |
39 40
|
sylibr |
|
| 42 |
41
|
rgen |
|
| 43 |
|
dfss3 |
|
| 44 |
42 43
|
mpbir |
|
| 45 |
|
elrabi |
|
| 46 |
45
|
ssriv |
|
| 47 |
|
iunss1 |
|
| 48 |
46 47
|
ax-mp |
|
| 49 |
44 48
|
eqssi |
|
| 50 |
49
|
sumeq1i |
|
| 51 |
50
|
a1i |
|
| 52 |
1 2 4
|
disjinfi |
|
| 53 |
|
inss2 |
|
| 54 |
53
|
a1i |
|
| 55 |
|
ssfi |
|
| 56 |
4 54 55
|
syl2anc |
|
| 57 |
56
|
adantr |
|
| 58 |
46
|
a1i |
|
| 59 |
|
inss1 |
|
| 60 |
59
|
rgenw |
|
| 61 |
60
|
a1i |
|
| 62 |
|
nfcv |
|
| 63 |
|
eqcom |
|
| 64 |
63
|
imbi1i |
|
| 65 |
|
eqcom |
|
| 66 |
65
|
imbi2i |
|
| 67 |
64 66
|
bitri |
|
| 68 |
9 67
|
mpbi |
|
| 69 |
6 62 68
|
cbvdisj |
|
| 70 |
2 69
|
sylibr |
|
| 71 |
|
disjss2 |
|
| 72 |
61 70 71
|
sylc |
|
| 73 |
|
disjss1 |
|
| 74 |
58 72 73
|
sylc |
|
| 75 |
|
simpl |
|
| 76 |
45
|
ad2antrl |
|
| 77 |
59
|
sseli |
|
| 78 |
77
|
adantl |
|
| 79 |
78
|
adantl |
|
| 80 |
|
nfv |
|
| 81 |
|
nfcv |
|
| 82 |
81 6
|
nfel |
|
| 83 |
80 26 82
|
nf3an |
|
| 84 |
|
nfv |
|
| 85 |
83 84
|
nfim |
|
| 86 |
|
eleq1w |
|
| 87 |
9
|
eleq2d |
|
| 88 |
86 87
|
3anbi23d |
|
| 89 |
88
|
imbi1d |
|
| 90 |
85 89 3
|
chvarfv |
|
| 91 |
75 76 79 90
|
syl3anc |
|
| 92 |
52 57 74 91
|
fsumiun |
|
| 93 |
68
|
ineq1d |
|
| 94 |
93
|
sumeq1d |
|
| 95 |
|
nfcv |
|
| 96 |
8 95
|
nfsum |
|
| 97 |
|
nfcv |
|
| 98 |
94 96 97
|
cbvsum |
|
| 99 |
98
|
a1i |
|
| 100 |
92 99
|
eqtrd |
|
| 101 |
13 51 100
|
3eqtrd |
|