| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fsumiunss.b |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) |
| 2 |
|
fsumiunss.dj |
⊢ ( 𝜑 → Disj 𝑥 ∈ 𝐴 𝐵 ) |
| 3 |
|
fsumiunss.c |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ) → 𝐶 ∈ ℂ ) |
| 4 |
|
fsumiunss.fi |
⊢ ( 𝜑 → 𝐷 ∈ Fin ) |
| 5 |
|
nfcv |
⊢ Ⅎ 𝑦 ( 𝐵 ∩ 𝐷 ) |
| 6 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 |
| 7 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐷 |
| 8 |
6 7
|
nfin |
⊢ Ⅎ 𝑥 ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) |
| 9 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑦 → 𝐵 = ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) |
| 10 |
9
|
ineq1d |
⊢ ( 𝑥 = 𝑦 → ( 𝐵 ∩ 𝐷 ) = ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) ) |
| 11 |
5 8 10
|
cbviun |
⊢ ∪ 𝑥 ∈ 𝐴 ( 𝐵 ∩ 𝐷 ) = ∪ 𝑦 ∈ 𝐴 ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) |
| 12 |
11
|
sumeq1i |
⊢ Σ 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 ( 𝐵 ∩ 𝐷 ) 𝐶 = Σ 𝑘 ∈ ∪ 𝑦 ∈ 𝐴 ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) 𝐶 |
| 13 |
12
|
a1i |
⊢ ( 𝜑 → Σ 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 ( 𝐵 ∩ 𝐷 ) 𝐶 = Σ 𝑘 ∈ ∪ 𝑦 ∈ 𝐴 ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) 𝐶 ) |
| 14 |
|
eliun |
⊢ ( 𝑧 ∈ ∪ 𝑦 ∈ 𝐴 ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) ↔ ∃ 𝑦 ∈ 𝐴 𝑧 ∈ ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) ) |
| 15 |
14
|
biimpi |
⊢ ( 𝑧 ∈ ∪ 𝑦 ∈ 𝐴 ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) → ∃ 𝑦 ∈ 𝐴 𝑧 ∈ ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) ) |
| 16 |
|
df-rex |
⊢ ( ∃ 𝑦 ∈ 𝐴 𝑧 ∈ ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) ↔ ∃ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) ) ) |
| 17 |
15 16
|
sylib |
⊢ ( 𝑧 ∈ ∪ 𝑦 ∈ 𝐴 ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) → ∃ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) ) ) |
| 18 |
|
nfcv |
⊢ Ⅎ 𝑦 𝑧 |
| 19 |
|
nfiu1 |
⊢ Ⅎ 𝑦 ∪ 𝑦 ∈ 𝐴 ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) |
| 20 |
18 19
|
nfel |
⊢ Ⅎ 𝑦 𝑧 ∈ ∪ 𝑦 ∈ 𝐴 ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) |
| 21 |
|
simpl |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) ) → 𝑦 ∈ 𝐴 ) |
| 22 |
|
ne0i |
⊢ ( 𝑧 ∈ ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) → ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) ≠ ∅ ) |
| 23 |
22
|
adantl |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) ) → ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) ≠ ∅ ) |
| 24 |
21 23
|
jca |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) ) → ( 𝑦 ∈ 𝐴 ∧ ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) ≠ ∅ ) ) |
| 25 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑦 |
| 26 |
|
nfv |
⊢ Ⅎ 𝑥 𝑦 ∈ 𝐴 |
| 27 |
26
|
nfci |
⊢ Ⅎ 𝑥 𝐴 |
| 28 |
|
nfcv |
⊢ Ⅎ 𝑥 ∅ |
| 29 |
8 28
|
nfne |
⊢ Ⅎ 𝑥 ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) ≠ ∅ |
| 30 |
10
|
neeq1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐵 ∩ 𝐷 ) ≠ ∅ ↔ ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) ≠ ∅ ) ) |
| 31 |
25 27 29 30
|
elrabf |
⊢ ( 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ( 𝐵 ∩ 𝐷 ) ≠ ∅ } ↔ ( 𝑦 ∈ 𝐴 ∧ ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) ≠ ∅ ) ) |
| 32 |
24 31
|
sylibr |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) ) → 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ( 𝐵 ∩ 𝐷 ) ≠ ∅ } ) |
| 33 |
|
simpr |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) ) → 𝑧 ∈ ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) ) |
| 34 |
32 33
|
jca |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) ) → ( 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ( 𝐵 ∩ 𝐷 ) ≠ ∅ } ∧ 𝑧 ∈ ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) ) ) |
| 35 |
34
|
a1i |
⊢ ( 𝑧 ∈ ∪ 𝑦 ∈ 𝐴 ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) → ( ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) ) → ( 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ( 𝐵 ∩ 𝐷 ) ≠ ∅ } ∧ 𝑧 ∈ ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) ) ) ) |
| 36 |
20 35
|
eximd |
⊢ ( 𝑧 ∈ ∪ 𝑦 ∈ 𝐴 ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) → ( ∃ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) ) → ∃ 𝑦 ( 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ( 𝐵 ∩ 𝐷 ) ≠ ∅ } ∧ 𝑧 ∈ ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) ) ) ) |
| 37 |
17 36
|
mpd |
⊢ ( 𝑧 ∈ ∪ 𝑦 ∈ 𝐴 ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) → ∃ 𝑦 ( 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ( 𝐵 ∩ 𝐷 ) ≠ ∅ } ∧ 𝑧 ∈ ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) ) ) |
| 38 |
|
df-rex |
⊢ ( ∃ 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ( 𝐵 ∩ 𝐷 ) ≠ ∅ } 𝑧 ∈ ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) ↔ ∃ 𝑦 ( 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ( 𝐵 ∩ 𝐷 ) ≠ ∅ } ∧ 𝑧 ∈ ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) ) ) |
| 39 |
37 38
|
sylibr |
⊢ ( 𝑧 ∈ ∪ 𝑦 ∈ 𝐴 ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) → ∃ 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ( 𝐵 ∩ 𝐷 ) ≠ ∅ } 𝑧 ∈ ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) ) |
| 40 |
|
eliun |
⊢ ( 𝑧 ∈ ∪ 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ( 𝐵 ∩ 𝐷 ) ≠ ∅ } ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) ↔ ∃ 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ( 𝐵 ∩ 𝐷 ) ≠ ∅ } 𝑧 ∈ ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) ) |
| 41 |
39 40
|
sylibr |
⊢ ( 𝑧 ∈ ∪ 𝑦 ∈ 𝐴 ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) → 𝑧 ∈ ∪ 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ( 𝐵 ∩ 𝐷 ) ≠ ∅ } ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) ) |
| 42 |
41
|
rgen |
⊢ ∀ 𝑧 ∈ ∪ 𝑦 ∈ 𝐴 ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) 𝑧 ∈ ∪ 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ( 𝐵 ∩ 𝐷 ) ≠ ∅ } ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) |
| 43 |
|
dfss3 |
⊢ ( ∪ 𝑦 ∈ 𝐴 ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) ⊆ ∪ 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ( 𝐵 ∩ 𝐷 ) ≠ ∅ } ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) ↔ ∀ 𝑧 ∈ ∪ 𝑦 ∈ 𝐴 ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) 𝑧 ∈ ∪ 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ( 𝐵 ∩ 𝐷 ) ≠ ∅ } ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) ) |
| 44 |
42 43
|
mpbir |
⊢ ∪ 𝑦 ∈ 𝐴 ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) ⊆ ∪ 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ( 𝐵 ∩ 𝐷 ) ≠ ∅ } ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) |
| 45 |
|
elrabi |
⊢ ( 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ( 𝐵 ∩ 𝐷 ) ≠ ∅ } → 𝑦 ∈ 𝐴 ) |
| 46 |
45
|
ssriv |
⊢ { 𝑥 ∈ 𝐴 ∣ ( 𝐵 ∩ 𝐷 ) ≠ ∅ } ⊆ 𝐴 |
| 47 |
|
iunss1 |
⊢ ( { 𝑥 ∈ 𝐴 ∣ ( 𝐵 ∩ 𝐷 ) ≠ ∅ } ⊆ 𝐴 → ∪ 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ( 𝐵 ∩ 𝐷 ) ≠ ∅ } ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) ⊆ ∪ 𝑦 ∈ 𝐴 ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) ) |
| 48 |
46 47
|
ax-mp |
⊢ ∪ 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ( 𝐵 ∩ 𝐷 ) ≠ ∅ } ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) ⊆ ∪ 𝑦 ∈ 𝐴 ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) |
| 49 |
44 48
|
eqssi |
⊢ ∪ 𝑦 ∈ 𝐴 ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) = ∪ 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ( 𝐵 ∩ 𝐷 ) ≠ ∅ } ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) |
| 50 |
49
|
sumeq1i |
⊢ Σ 𝑘 ∈ ∪ 𝑦 ∈ 𝐴 ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) 𝐶 = Σ 𝑘 ∈ ∪ 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ( 𝐵 ∩ 𝐷 ) ≠ ∅ } ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) 𝐶 |
| 51 |
50
|
a1i |
⊢ ( 𝜑 → Σ 𝑘 ∈ ∪ 𝑦 ∈ 𝐴 ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) 𝐶 = Σ 𝑘 ∈ ∪ 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ( 𝐵 ∩ 𝐷 ) ≠ ∅ } ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) 𝐶 ) |
| 52 |
1 2 4
|
disjinfi |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ ( 𝐵 ∩ 𝐷 ) ≠ ∅ } ∈ Fin ) |
| 53 |
|
inss2 |
⊢ ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) ⊆ 𝐷 |
| 54 |
53
|
a1i |
⊢ ( 𝜑 → ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) ⊆ 𝐷 ) |
| 55 |
|
ssfi |
⊢ ( ( 𝐷 ∈ Fin ∧ ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) ⊆ 𝐷 ) → ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) ∈ Fin ) |
| 56 |
4 54 55
|
syl2anc |
⊢ ( 𝜑 → ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) ∈ Fin ) |
| 57 |
56
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ( 𝐵 ∩ 𝐷 ) ≠ ∅ } ) → ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) ∈ Fin ) |
| 58 |
46
|
a1i |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ ( 𝐵 ∩ 𝐷 ) ≠ ∅ } ⊆ 𝐴 ) |
| 59 |
|
inss1 |
⊢ ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) ⊆ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 |
| 60 |
59
|
rgenw |
⊢ ∀ 𝑦 ∈ 𝐴 ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) ⊆ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 |
| 61 |
60
|
a1i |
⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝐴 ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) ⊆ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) |
| 62 |
|
nfcv |
⊢ Ⅎ 𝑦 𝐵 |
| 63 |
|
eqcom |
⊢ ( 𝑥 = 𝑦 ↔ 𝑦 = 𝑥 ) |
| 64 |
63
|
imbi1i |
⊢ ( ( 𝑥 = 𝑦 → 𝐵 = ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ↔ ( 𝑦 = 𝑥 → 𝐵 = ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) |
| 65 |
|
eqcom |
⊢ ( 𝐵 = ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ↔ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 = 𝐵 ) |
| 66 |
65
|
imbi2i |
⊢ ( ( 𝑦 = 𝑥 → 𝐵 = ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ↔ ( 𝑦 = 𝑥 → ⦋ 𝑦 / 𝑥 ⦌ 𝐵 = 𝐵 ) ) |
| 67 |
64 66
|
bitri |
⊢ ( ( 𝑥 = 𝑦 → 𝐵 = ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ↔ ( 𝑦 = 𝑥 → ⦋ 𝑦 / 𝑥 ⦌ 𝐵 = 𝐵 ) ) |
| 68 |
9 67
|
mpbi |
⊢ ( 𝑦 = 𝑥 → ⦋ 𝑦 / 𝑥 ⦌ 𝐵 = 𝐵 ) |
| 69 |
6 62 68
|
cbvdisj |
⊢ ( Disj 𝑦 ∈ 𝐴 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ↔ Disj 𝑥 ∈ 𝐴 𝐵 ) |
| 70 |
2 69
|
sylibr |
⊢ ( 𝜑 → Disj 𝑦 ∈ 𝐴 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) |
| 71 |
|
disjss2 |
⊢ ( ∀ 𝑦 ∈ 𝐴 ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) ⊆ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 → ( Disj 𝑦 ∈ 𝐴 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 → Disj 𝑦 ∈ 𝐴 ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) ) ) |
| 72 |
61 70 71
|
sylc |
⊢ ( 𝜑 → Disj 𝑦 ∈ 𝐴 ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) ) |
| 73 |
|
disjss1 |
⊢ ( { 𝑥 ∈ 𝐴 ∣ ( 𝐵 ∩ 𝐷 ) ≠ ∅ } ⊆ 𝐴 → ( Disj 𝑦 ∈ 𝐴 ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) → Disj 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ( 𝐵 ∩ 𝐷 ) ≠ ∅ } ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) ) ) |
| 74 |
58 72 73
|
sylc |
⊢ ( 𝜑 → Disj 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ( 𝐵 ∩ 𝐷 ) ≠ ∅ } ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) ) |
| 75 |
|
simpl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ( 𝐵 ∩ 𝐷 ) ≠ ∅ } ∧ 𝑘 ∈ ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) ) ) → 𝜑 ) |
| 76 |
45
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ( 𝐵 ∩ 𝐷 ) ≠ ∅ } ∧ 𝑘 ∈ ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) ) ) → 𝑦 ∈ 𝐴 ) |
| 77 |
59
|
sseli |
⊢ ( 𝑘 ∈ ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) → 𝑘 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) |
| 78 |
77
|
adantl |
⊢ ( ( 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ( 𝐵 ∩ 𝐷 ) ≠ ∅ } ∧ 𝑘 ∈ ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) ) → 𝑘 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) |
| 79 |
78
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ( 𝐵 ∩ 𝐷 ) ≠ ∅ } ∧ 𝑘 ∈ ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) ) ) → 𝑘 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) |
| 80 |
|
nfv |
⊢ Ⅎ 𝑥 𝜑 |
| 81 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑘 |
| 82 |
81 6
|
nfel |
⊢ Ⅎ 𝑥 𝑘 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 |
| 83 |
80 26 82
|
nf3an |
⊢ Ⅎ 𝑥 ( 𝜑 ∧ 𝑦 ∈ 𝐴 ∧ 𝑘 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) |
| 84 |
|
nfv |
⊢ Ⅎ 𝑥 𝐶 ∈ ℂ |
| 85 |
83 84
|
nfim |
⊢ Ⅎ 𝑥 ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ∧ 𝑘 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) → 𝐶 ∈ ℂ ) |
| 86 |
|
eleq1w |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴 ) ) |
| 87 |
9
|
eleq2d |
⊢ ( 𝑥 = 𝑦 → ( 𝑘 ∈ 𝐵 ↔ 𝑘 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) |
| 88 |
86 87
|
3anbi23d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ) ↔ ( 𝜑 ∧ 𝑦 ∈ 𝐴 ∧ 𝑘 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) ) |
| 89 |
88
|
imbi1d |
⊢ ( 𝑥 = 𝑦 → ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ) → 𝐶 ∈ ℂ ) ↔ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ∧ 𝑘 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) → 𝐶 ∈ ℂ ) ) ) |
| 90 |
85 89 3
|
chvarfv |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ∧ 𝑘 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) → 𝐶 ∈ ℂ ) |
| 91 |
75 76 79 90
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ( 𝐵 ∩ 𝐷 ) ≠ ∅ } ∧ 𝑘 ∈ ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) ) ) → 𝐶 ∈ ℂ ) |
| 92 |
52 57 74 91
|
fsumiun |
⊢ ( 𝜑 → Σ 𝑘 ∈ ∪ 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ( 𝐵 ∩ 𝐷 ) ≠ ∅ } ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) 𝐶 = Σ 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ( 𝐵 ∩ 𝐷 ) ≠ ∅ } Σ 𝑘 ∈ ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) 𝐶 ) |
| 93 |
68
|
ineq1d |
⊢ ( 𝑦 = 𝑥 → ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) = ( 𝐵 ∩ 𝐷 ) ) |
| 94 |
93
|
sumeq1d |
⊢ ( 𝑦 = 𝑥 → Σ 𝑘 ∈ ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) 𝐶 = Σ 𝑘 ∈ ( 𝐵 ∩ 𝐷 ) 𝐶 ) |
| 95 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐶 |
| 96 |
8 95
|
nfsum |
⊢ Ⅎ 𝑥 Σ 𝑘 ∈ ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) 𝐶 |
| 97 |
|
nfcv |
⊢ Ⅎ 𝑦 Σ 𝑘 ∈ ( 𝐵 ∩ 𝐷 ) 𝐶 |
| 98 |
94 96 97
|
cbvsum |
⊢ Σ 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ( 𝐵 ∩ 𝐷 ) ≠ ∅ } Σ 𝑘 ∈ ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) 𝐶 = Σ 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ ( 𝐵 ∩ 𝐷 ) ≠ ∅ } Σ 𝑘 ∈ ( 𝐵 ∩ 𝐷 ) 𝐶 |
| 99 |
98
|
a1i |
⊢ ( 𝜑 → Σ 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ( 𝐵 ∩ 𝐷 ) ≠ ∅ } Σ 𝑘 ∈ ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) 𝐶 = Σ 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ ( 𝐵 ∩ 𝐷 ) ≠ ∅ } Σ 𝑘 ∈ ( 𝐵 ∩ 𝐷 ) 𝐶 ) |
| 100 |
92 99
|
eqtrd |
⊢ ( 𝜑 → Σ 𝑘 ∈ ∪ 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ( 𝐵 ∩ 𝐷 ) ≠ ∅ } ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∩ 𝐷 ) 𝐶 = Σ 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ ( 𝐵 ∩ 𝐷 ) ≠ ∅ } Σ 𝑘 ∈ ( 𝐵 ∩ 𝐷 ) 𝐶 ) |
| 101 |
13 51 100
|
3eqtrd |
⊢ ( 𝜑 → Σ 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 ( 𝐵 ∩ 𝐷 ) 𝐶 = Σ 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ ( 𝐵 ∩ 𝐷 ) ≠ ∅ } Σ 𝑘 ∈ ( 𝐵 ∩ 𝐷 ) 𝐶 ) |