| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fsumrev.1 |
|
| 2 |
|
fsumrev.2 |
|
| 3 |
|
fsumrev.3 |
|
| 4 |
|
fsumrev.4 |
|
| 5 |
|
fsumrev.5 |
|
| 6 |
|
fzfid |
|
| 7 |
|
eqid |
|
| 8 |
|
ovexd |
|
| 9 |
|
ovexd |
|
| 10 |
|
simprr |
|
| 11 |
|
simprl |
|
| 12 |
2
|
adantr |
|
| 13 |
3
|
adantr |
|
| 14 |
1
|
adantr |
|
| 15 |
11
|
elfzelzd |
|
| 16 |
|
fzrev |
|
| 17 |
12 13 14 15 16
|
syl22anc |
|
| 18 |
11 17
|
mpbid |
|
| 19 |
10 18
|
eqeltrd |
|
| 20 |
10
|
oveq2d |
|
| 21 |
|
zcn |
|
| 22 |
|
zcn |
|
| 23 |
|
nncan |
|
| 24 |
21 22 23
|
syl2an |
|
| 25 |
1 15 24
|
syl2an2r |
|
| 26 |
20 25
|
eqtr2d |
|
| 27 |
19 26
|
jca |
|
| 28 |
|
simprr |
|
| 29 |
|
simprl |
|
| 30 |
2
|
adantr |
|
| 31 |
3
|
adantr |
|
| 32 |
1
|
adantr |
|
| 33 |
29
|
elfzelzd |
|
| 34 |
|
fzrev2 |
|
| 35 |
30 31 32 33 34
|
syl22anc |
|
| 36 |
29 35
|
mpbid |
|
| 37 |
28 36
|
eqeltrd |
|
| 38 |
28
|
oveq2d |
|
| 39 |
|
zcn |
|
| 40 |
|
nncan |
|
| 41 |
21 39 40
|
syl2an |
|
| 42 |
1 33 41
|
syl2an2r |
|
| 43 |
38 42
|
eqtr2d |
|
| 44 |
37 43
|
jca |
|
| 45 |
27 44
|
impbida |
|
| 46 |
7 8 9 45
|
f1od |
|
| 47 |
|
oveq2 |
|
| 48 |
|
ovex |
|
| 49 |
47 7 48
|
fvmpt |
|
| 50 |
49
|
adantl |
|
| 51 |
5 6 46 50 4
|
fsumf1o |
|