Description: Reversal of a finite sum. (Contributed by NM, 26-Nov-2005) (Revised by Mario Carneiro, 24-Apr-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fsumrev.1 | |
|
fsumrev.2 | |
||
fsumrev.3 | |
||
fsumrev.4 | |
||
fsumrev.5 | |
||
Assertion | fsumrev | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fsumrev.1 | |
|
2 | fsumrev.2 | |
|
3 | fsumrev.3 | |
|
4 | fsumrev.4 | |
|
5 | fsumrev.5 | |
|
6 | fzfid | |
|
7 | eqid | |
|
8 | ovexd | |
|
9 | ovexd | |
|
10 | simprr | |
|
11 | simprl | |
|
12 | 2 | adantr | |
13 | 3 | adantr | |
14 | 1 | adantr | |
15 | 11 | elfzelzd | |
16 | fzrev | |
|
17 | 12 13 14 15 16 | syl22anc | |
18 | 11 17 | mpbid | |
19 | 10 18 | eqeltrd | |
20 | 10 | oveq2d | |
21 | zcn | |
|
22 | zcn | |
|
23 | nncan | |
|
24 | 21 22 23 | syl2an | |
25 | 1 15 24 | syl2an2r | |
26 | 20 25 | eqtr2d | |
27 | 19 26 | jca | |
28 | simprr | |
|
29 | simprl | |
|
30 | 2 | adantr | |
31 | 3 | adantr | |
32 | 1 | adantr | |
33 | 29 | elfzelzd | |
34 | fzrev2 | |
|
35 | 30 31 32 33 34 | syl22anc | |
36 | 29 35 | mpbid | |
37 | 28 36 | eqeltrd | |
38 | 28 | oveq2d | |
39 | zcn | |
|
40 | nncan | |
|
41 | 21 39 40 | syl2an | |
42 | 1 33 41 | syl2an2r | |
43 | 38 42 | eqtr2d | |
44 | 37 43 | jca | |
45 | 27 44 | impbida | |
46 | 7 8 9 45 | f1od | |
47 | oveq2 | |
|
48 | ovex | |
|
49 | 47 7 48 | fvmpt | |
50 | 49 | adantl | |
51 | 5 6 46 50 4 | fsumf1o | |