Metamath Proof Explorer


Theorem fsumrev

Description: Reversal of a finite sum. (Contributed by NM, 26-Nov-2005) (Revised by Mario Carneiro, 24-Apr-2014)

Ref Expression
Hypotheses fsumrev.1 φK
fsumrev.2 φM
fsumrev.3 φN
fsumrev.4 φjMNA
fsumrev.5 j=KkA=B
Assertion fsumrev φj=MNA=k=KNKMB

Proof

Step Hyp Ref Expression
1 fsumrev.1 φK
2 fsumrev.2 φM
3 fsumrev.3 φN
4 fsumrev.4 φjMNA
5 fsumrev.5 j=KkA=B
6 fzfid φKNKMFin
7 eqid jKNKMKj=jKNKMKj
8 ovexd φjKNKMKjV
9 ovexd φkMNKkV
10 simprr φjKNKMk=Kjk=Kj
11 simprl φjKNKMk=KjjKNKM
12 2 adantr φjKNKMk=KjM
13 3 adantr φjKNKMk=KjN
14 1 adantr φjKNKMk=KjK
15 11 elfzelzd φjKNKMk=Kjj
16 fzrev MNKjjKNKMKjMN
17 12 13 14 15 16 syl22anc φjKNKMk=KjjKNKMKjMN
18 11 17 mpbid φjKNKMk=KjKjMN
19 10 18 eqeltrd φjKNKMk=KjkMN
20 10 oveq2d φjKNKMk=KjKk=KKj
21 zcn KK
22 zcn jj
23 nncan KjKKj=j
24 21 22 23 syl2an KjKKj=j
25 1 15 24 syl2an2r φjKNKMk=KjKKj=j
26 20 25 eqtr2d φjKNKMk=Kjj=Kk
27 19 26 jca φjKNKMk=KjkMNj=Kk
28 simprr φkMNj=Kkj=Kk
29 simprl φkMNj=KkkMN
30 2 adantr φkMNj=KkM
31 3 adantr φkMNj=KkN
32 1 adantr φkMNj=KkK
33 29 elfzelzd φkMNj=Kkk
34 fzrev2 MNKkkMNKkKNKM
35 30 31 32 33 34 syl22anc φkMNj=KkkMNKkKNKM
36 29 35 mpbid φkMNj=KkKkKNKM
37 28 36 eqeltrd φkMNj=KkjKNKM
38 28 oveq2d φkMNj=KkKj=KKk
39 zcn kk
40 nncan KkKKk=k
41 21 39 40 syl2an KkKKk=k
42 1 33 41 syl2an2r φkMNj=KkKKk=k
43 38 42 eqtr2d φkMNj=Kkk=Kj
44 37 43 jca φkMNj=KkjKNKMk=Kj
45 27 44 impbida φjKNKMk=KjkMNj=Kk
46 7 8 9 45 f1od φjKNKMKj:KNKM1-1 ontoMN
47 oveq2 j=kKj=Kk
48 ovex KkV
49 47 7 48 fvmpt kKNKMjKNKMKjk=Kk
50 49 adantl φkKNKMjKNKMKjk=Kk
51 5 6 46 50 4 fsumf1o φj=MNA=k=KNKMB