Metamath Proof Explorer


Theorem fsumrp0cl

Description: Closure of a finite sum of nonnegative reals. (Contributed by Thierry Arnoux, 25-Jun-2017)

Ref Expression
Hypotheses fsumrp0cl.1 φAFin
fsumrp0cl.2 φkAB0+∞
Assertion fsumrp0cl φkAB0+∞

Proof

Step Hyp Ref Expression
1 fsumrp0cl.1 φAFin
2 fsumrp0cl.2 φkAB0+∞
3 rge0ssre 0+∞
4 ax-resscn
5 3 4 sstri 0+∞
6 5 a1i φ0+∞
7 simprl φx0+∞y0+∞x0+∞
8 3 7 sselid φx0+∞y0+∞x
9 simprr φx0+∞y0+∞y0+∞
10 3 9 sselid φx0+∞y0+∞y
11 8 10 readdcld φx0+∞y0+∞x+y
12 11 rexrd φx0+∞y0+∞x+y*
13 0xr 0*
14 pnfxr +∞*
15 elico1 0*+∞*x0+∞x*0xx<+∞
16 13 14 15 mp2an x0+∞x*0xx<+∞
17 16 simp2bi x0+∞0x
18 7 17 syl φx0+∞y0+∞0x
19 elico1 0*+∞*y0+∞y*0yy<+∞
20 13 14 19 mp2an y0+∞y*0yy<+∞
21 20 simp2bi y0+∞0y
22 9 21 syl φx0+∞y0+∞0y
23 8 10 18 22 addge0d φx0+∞y0+∞0x+y
24 ltpnf x+yx+y<+∞
25 11 24 syl φx0+∞y0+∞x+y<+∞
26 elico1 0*+∞*x+y0+∞x+y*0x+yx+y<+∞
27 13 14 26 mp2an x+y0+∞x+y*0x+yx+y<+∞
28 12 23 25 27 syl3anbrc φx0+∞y0+∞x+y0+∞
29 0e0icopnf 00+∞
30 29 a1i φ00+∞
31 6 28 1 2 30 fsumcllem φkAB0+∞