Metamath Proof Explorer


Theorem fsupprnfi

Description: Finite support implies finite range. (Contributed by Thierry Arnoux, 24-Jun-2024)

Ref Expression
Assertion fsupprnfi FunFFV0˙WfinSupp0˙FranFFin

Proof

Step Hyp Ref Expression
1 snfi 0˙Fin
2 simpll FunFFV0˙WfinSupp0˙FFunF
3 simplr FunFFV0˙WfinSupp0˙FFV
4 simprl FunFFV0˙WfinSupp0˙F0˙W
5 ressupprn FunFFV0˙WranFsupp0˙F=ranF0˙
6 2 3 4 5 syl3anc FunFFV0˙WfinSupp0˙FranFsupp0˙F=ranF0˙
7 simprr FunFFV0˙WfinSupp0˙FfinSupp0˙F
8 7 fsuppimpd FunFFV0˙WfinSupp0˙FFsupp0˙Fin
9 suppssdm Fsupp0˙domF
10 ssdmres Fsupp0˙domFdomFsupp0˙F=Fsupp0˙
11 9 10 mpbi domFsupp0˙F=Fsupp0˙
12 2 funresd FunFFV0˙WfinSupp0˙FFunFsupp0˙F
13 funforn FunFsupp0˙FFsupp0˙F:domFsupp0˙FontoranFsupp0˙F
14 12 13 sylib FunFFV0˙WfinSupp0˙FFsupp0˙F:domFsupp0˙FontoranFsupp0˙F
15 foeq2 domFsupp0˙F=Fsupp0˙Fsupp0˙F:domFsupp0˙FontoranFsupp0˙FFsupp0˙F:Fsupp0˙ontoranFsupp0˙F
16 15 biimpa domFsupp0˙F=Fsupp0˙Fsupp0˙F:domFsupp0˙FontoranFsupp0˙FFsupp0˙F:Fsupp0˙ontoranFsupp0˙F
17 11 14 16 sylancr FunFFV0˙WfinSupp0˙FFsupp0˙F:Fsupp0˙ontoranFsupp0˙F
18 fofi Fsupp0˙FinFsupp0˙F:Fsupp0˙ontoranFsupp0˙FranFsupp0˙FFin
19 8 17 18 syl2anc FunFFV0˙WfinSupp0˙FranFsupp0˙FFin
20 6 19 eqeltrrd FunFFV0˙WfinSupp0˙FranF0˙Fin
21 diffib 0˙FinranFFinranF0˙Fin
22 21 biimpar 0˙FinranF0˙FinranFFin
23 1 20 22 sylancr FunFFV0˙WfinSupp0˙FranFFin