Metamath Proof Explorer


Theorem fsuppssindlem1

Description: Lemma for fsuppssind . Functions are zero outside of their support. (Contributed by SN, 15-Jul-2024)

Ref Expression
Hypotheses fsuppssindlem1.z φ 0 ˙ W
fsuppssindlem1.v φ I V
fsuppssindlem1.1 φ F : I B
fsuppssindlem1.2 φ F supp 0 ˙ S
Assertion fsuppssindlem1 φ F = x I if x S F S x 0 ˙

Proof

Step Hyp Ref Expression
1 fsuppssindlem1.z φ 0 ˙ W
2 fsuppssindlem1.v φ I V
3 fsuppssindlem1.1 φ F : I B
4 fsuppssindlem1.2 φ F supp 0 ˙ S
5 3 feqmptd φ F = x I F x
6 fvres x S F S x = F x
7 6 adantl φ x I x S F S x = F x
8 eldif x I S x I ¬ x S
9 3 4 2 1 suppssr φ x I S F x = 0 ˙
10 9 eqcomd φ x I S 0 ˙ = F x
11 8 10 sylan2br φ x I ¬ x S 0 ˙ = F x
12 11 anassrs φ x I ¬ x S 0 ˙ = F x
13 7 12 ifeqda φ x I if x S F S x 0 ˙ = F x
14 13 mpteq2dva φ x I if x S F S x 0 ˙ = x I F x
15 5 14 eqtr4d φ F = x I if x S F S x 0 ˙