Metamath Proof Explorer


Theorem ftc1lem3

Description: Lemma for ftc1 . (Contributed by Mario Carneiro, 1-Sep-2014) (Revised by Mario Carneiro, 8-Sep-2015)

Ref Expression
Hypotheses ftc1.g G=xABAxFtdt
ftc1.a φA
ftc1.b φB
ftc1.le φAB
ftc1.s φABD
ftc1.d φD
ftc1.i φF𝐿1
ftc1.c φCAB
ftc1.f φFKCnPLC
ftc1.j J=L𝑡
ftc1.k K=L𝑡D
ftc1.l L=TopOpenfld
Assertion ftc1lem3 φF:D

Proof

Step Hyp Ref Expression
1 ftc1.g G=xABAxFtdt
2 ftc1.a φA
3 ftc1.b φB
4 ftc1.le φAB
5 ftc1.s φABD
6 ftc1.d φD
7 ftc1.i φF𝐿1
8 ftc1.c φCAB
9 ftc1.f φFKCnPLC
10 ftc1.j J=L𝑡
11 ftc1.k K=L𝑡D
12 ftc1.l L=TopOpenfld
13 12 cnfldtopon LTopOn
14 ax-resscn
15 6 14 sstrdi φD
16 resttopon LTopOnDL𝑡DTopOnD
17 13 15 16 sylancr φL𝑡DTopOnD
18 11 17 eqeltrid φKTopOnD
19 13 a1i φLTopOn
20 cnpf2 KTopOnDLTopOnFKCnPLCF:D
21 18 19 9 20 syl3anc φF:D